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Abstract
Histone modifications play important roles in gastrointestinal tumorigenesis as tumor suppressors 
or oncogenic drivers depending on the type of tumor and histone modification. The diversity of 
histone modifications leads to a remarkable complexity in the functions and mechanisms they 
regulate, which are gradually beginning to be elucidated. This review concentrates on current 
research regarding the roles of histone modifications and associated histone-modifying enzymes in 
gastrointestinal tumorigenesis.

Keywords: Histone modification; Tumorigenesis; Epigenetics

Jing Liu and Li Li*

Department of Medicine and Stem Cell Research, Shanghai Jiao Tong University, Shanghai, China

Impact Statement
Epigenetics is a branch of genetics, and the connection between histone modifications and 

tumorigenesis has been a promising field for cancer research. The diversity of histone modifications 
leads to a remarkable complexity in the functions and mechanisms that are gradually beginning 
to be elucidated. The dynamic balance of histone modifications and their effects are crucial for 
gastrointestinal tumorigenesis. Histone-modifying enzymes have been the targets of therapeutic 
agents. These enzymes have either been authorized for cancer treatment or are under development 
in clinical trials.

Introduction
The term “epigenetics” was originally used to describe the mechanism of heritable changes 

in a cellular phenotype that were related to the control and modification of expression of genetic 
materials without any changes in DNA sequences [1]. Epigenetic changes are reversible and may 
lead to loss or gain of certain biological functions. The three most well-known mechanisms of 
epigenetic regulations of gene expression involve changes in: (i) DNA methylation; (ii) histone 
modification; and (iii) RNA-associated silencing.

Eukaryotic DNA has a complex three-dimensional structure and is condensed within the cell 
nucleus by means of associations with histones. These DNA-histone complexes are the primary 
components of chromatin in eukaryotic cells. The chromatin forms a “beads-on-a-string” structure, 
and its basic unit is the nucleosome, which is highly conserved in various species and repetitive 
throughout the whole genome. The nucleosome is composed of a histone core that is wrapped around 
by two loops of DNAs (approximately 147 bp). A histone linker H1, which binds nucleosomes, is 
involved in condensation of chromatin [2]. The histone core is an octamer consisting of pairs of 
each of the four core histone proteins (H2A, H2B, H3, H4) [3,4]. Altered or abnormal chromatin 
conformation has also now been recognized as an epigenetic hallmark of many cancers.

Histone modifications can affect the interactions between histone proteins and DNAs as well 
as between adjacent histone proteins. Histone modification is critical for the regulation of normal 
cellular functions, while dysfunction of histone modification attributed to aberrant expression, 
mutation, or translocation, results in pathological conditions, such as gastrointestinal cancer. Over 
recent decades, the connection between epigenetics and gastrointestinal tumorigenesis has become 
a promising field for cancer research [5].

It is well known that histone-modifying enzymes participate in gastrointestinal tumorigenesis, 
acting as oncogenic drivers or tumor suppressors depending on the specific histone-modifying 
enzymes or types of cancer. In this review, we focus on the current knowledge regarding the roles of 
histone modifications and associated histone-modifying enzymes in gastrointestinal tumorigenesis.
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Histone Modifications and Gastrointestinal 
Tumorigenesis

Since Allfrey et al. [6] proposed the concept that histone 
modifications have a functional influence on the regulation of 
transcription in 1964; researchers have learned that these modifications 
have a major influence not only on transcription but also in numerous 
chromatin-related processes, such as gene transcription, DNA repair, 
DNA replication, DNA recombination, and chromosome segregation 
[7]. The diversity of histone modifications leads to a remarkable 
complexity in the functions and mechanisms they regulate and which 
are gradually beginning to be elucidated. Using transcription as an 
example, we know that multiple co-existing histone modifications are 
associated with transcription activation, while others are associated 
with repression. The state of histone modifications is dynamically 
balanced by two enzyme families with converse catalytic activities: 
Histone-modifying and de-modifying enzymes.

There are several types of histone modifications, including 
phosphorylation, ubiquitination, acetylation, methylation, 
SUMOylation, Biotinylation, citrullination, poly-ADP ribosylation, 
N-glycosylation, and proline cis-trans isomerization. A summary of 
histone modifications and associated histone-modifying enzymes in 
tumorigenesis is provided in Figure 1. They are shown to directly or 
indirectly influence chromatin structures and in turn tumorigenesis. 
Meanwhile, numerous histone-modifying enzymes have been 
identified and characterized by performing post-translational 
covalent modifications by attaching different portions to specific 
residues on the tails of histones. Moreover, the dysregulation of 
these modifications can lead to abnormal gene expression related to 
tumorigenesis, relying on the modification pattern of the amino acid 
residues on histone tails.

Gastrointestinal tumors, mainly including gastric and colorectal 
tumors, account for a large proportion of human malignancies. 
Gastric cancer is the fourth most frequently occurring cancer 
worldwide, and originates from the mucosal epithelial cells located 
in the superficial layer of the gastric wall. It can therefore occur in 
various regions of the stomach. Colorectal cancer is the third most 
common cancer in humans, with five-year survival rates of only 
less than 15% when tumors spread to distant sites. Major advances 
in molecular and cellular technologies over the past 20 years have 
led to a better understanding of the mechanisms of gastrointestinal 
tumorigenesis. Moreover, it has been well reported in recent years 
that histone modifications and associated histone-modifying enzymes 
play important roles in gastrointestinal tumorigenesis.

Histone phosphorylation
All four nucleosome histone tails contain acceptor sites (serine, 

threonine, and tyrosine residues) that can be phosphorylated by 
many protein kinases and dephosphorylated by phosphatases. In 
mammalian cells, phosphorylation of histones H1, H2B, H3, and 
the histone variant H2AX plays a crucial role in gene expression 
regulation, mitosis, and DNA repair [8]. Histone phosphorylation 
is prominently involved in various cellular processes associated 
with chromatin remodeling and gene expression. Abnormal histone 
phosphorylation has been reported in many types of cancers such as 
colorectal, prostate, and breast cancer [9].

Somatic amplifications of mitogen and stress-activated kinase 1 
and 2 (MSK1/2) have been detected in colorectal, prostate, and breast 
cancers. The inhibition of MSK1/2 reduces cancer cell proliferation 

in vitro and tumor development in vivo. MSK1/2 can specifically 
phosphorylate H3 S10 and S28 at the promoter regions of FOS and 
JUN genes, which can then activate their transcription and promote 
tumorigenesis [10-13].

During mitosis, H3S10ph and H3S28ph of the whole 
chromosomes are mediated by Aurora B kinase (AURKB), and 
this is essential to maintain chromosome stability. Dysregulation 
of AURKB is related to high aggressiveness and poor prognosis in 
colorectal cancer [14,15].

Histone ubiquitination
It has been shown that H2A, H2B, and H3 can be ubiquitination 

targets associated with DNA repair, gene transcription and genome 
integrity. Ubiquitination of  H2AK119 leads to gene suppression 
in mammalian cells, while ubiquitination of H2BK123, which 
is catalyzed by RNF20 and RNF40, is linked with transcription 
activation, such as the activated expression of tumor suppressor p53. 
It has been reported that there is a global loss of H2Bub1 in colon, 
ovarian, lung, and parathyroid cancers [16,17].

Histone methylation
Histone methylation is one of the key markers in histone 

modifications that occur at both arginine and lysine residues on the 
tails of histone proteins H3 and H4. By adding one, two, or three 
methyl groups to certain amino acids, the transcription of a certain 
gene can be either activated or repressed [18]. Methylation states are 
usually regulated by two enzyme families: Histone Methyltransferases 
(HMTs) and Histone Demethylase (HDMs). HMTs consist of two 
families: Histone Lysine Methyltransferases (HKMTs) and Protein 
Arginine Methyltransferases (PRMTs). In addition, dysregulation of 
histone methylation and mutational inactivation or overexpression of 
specific methyltransferases are linked to the pathogenesis of various 
types of cancer [19-22].

HKMTs: Most HKMTs possess a Su(var)3-9, enhancer of Zeste, 
trithorax (SET) domain, except for DOT1L protein [23]. HKMT 
proteins can be classified into the following subgroups: SET1, SET2, 
suppressor of variegation (SUV39), SET and MYND domain-
containing (SMYD), enhancer of zeste homolog (EZH), PR domain 
(PRDM), and other SET domain-containing proteins. Notably, 
MLL, EZH2, SETDB1, SMYD, NSD1, SETD2, and DOT1L have 
been identified as functional oncogenic drivers in gastrointestinal 
tumorigenesis.

MLL: Mixed lineage leukemia 1 (MLL-1), also known as histone-
lysine N-methyltransferase 2A (KMT2A), is a HKMT that catalyzes 
the methylation of H3K4 and acts in opposition to polycomb 
repressive complex proteins [24]. MLL-1 genetic events, particularly 
gene fusion and overamplification, have been shown to be important 
characteristics of leukemia. Frame shift mutations of MLL genes 
and loss of expression of MLL3 protein are common in gastric and 
colorectal cancers with high microsatellite instability [25].

EZH2 and EZH1: EZH2 and EZH1, two members of the EZH 
family of HKMTs, mediate H3K27 methylation and transcription 
suppression in the form of a multi-subunit protein complex polycomb 
repression complex 2 (PRC2), a protein complex that involves 
both a K-methyltransferase and “reader” proteins that recognize 
H3K27me3. In cancer cells, H3K27me3 has also been demonstrated 
to repress many gene expressions [26]. EZH2 is upregulated both at 
the transcriptional and protein level in many human cancers and 
promotes cancer cell proliferation, invasion, and metastasis [27-29]. 
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EZH2 expression is also associated with survival in colorectal cancer 
patients treated with anti-EGFR therapeutics [30]. Silencing EZH2 
inhibits colorectal cancer cell proliferation, significantly reduces 
the CD133+/CD44+ subpopulation, decreases expression of self-
renewal-related genes, and strongly impairs tumor-initiating capacity 
[31]. At present, several EZH2 small molecular inhibitors have been 
developed, one (EPZ6438) of which is assessed in phase 1/2 clinical 
trials for B-cell lymphoma or advanced solid tumors [32].

SETDB1: SETDB1, a histone methyltransferase that plays a 
critical role in early development, methylates histone H3 on lysine 
9, up to tri-methylation (H3K9me3). SETDB1 is located within a 
melanoma susceptibility locus and facilitates melanoma formation. 
SETDB1 is also frequently amplified in other tumor types, such as 
liver and lung cancer [33,34]. In colorectal cancer, SETDB1 mediates 
APAK repression under hypoxia by an increase in H3K9me3 along 
the APAK loci, and facilitates hypoxia-induced p53-dependent 
apoptosis [35].

SYMD: SYMD subfamily includes 4 members (SMYD1, SMYD2, 
SMYD3, SMYD4) and is characterized by a split SET domain that 
does not have definite substrate specificity. SMYD2 methylates 
H3K4 and H3K36, while H3K4, H4K5, and H4K20 are the targets 
of SMYD3. Both of these are over-expressed in gastro colorectal and 
hepatocellular carcinomas and promote cancer cell proliferation 
[36-41]. Over expression of SMYD3 is relevant to increased 
STAT3 activation in gastric cancer [39]. Smyd3 binds H3K4Me3-
modified histone tails, which facilitates its recruitment to the core 
promoter regions of a particular set of genes [40]. It was found that 
in the development of lung adenocarcinoma and pancreatic ductal 
adenocarcinoma, Ras/Raf/MEK/ERK signaling was activated by the 
methylation of the lysine 260 of the MAP3K2 gene by SMYD3 [42].

NSD1: NSD1 belongs to the SET2 subfamily of HKMTs, 
mediating H3K36 dimethylation. It was found that in AML, NSD1 
tends to be combined with nucleoporin-98 to form a fusion protein 
in the recurring t(5;11)(q35;p15.5) genomic translocation. Several 
oncogenic genes including HoxA7, HoxA9, HoxA10, and Meis1 can 
be transcriptionally activated by this fusion protein [43]. It has been 
reported that a mononucleotide repeat (A7) in the coding sequence 
of NSD1 can be a target for a frame shift mutation in cancers with 
Microsatellite Instability (MSI), such as gastric and colorectal cancers 
[44].

SETD2: SETD2 is the H3K36 trimethyltransferase and plays an 
important role in gene transcription elongation and mismatch repair 
by interacting with RNA polymerase II in cells. SETD2 mutations 
have been detected in many human tumor cells including GI stromal 
tumors, renal, bladder and breast carcinomas, and high-grade gliomas 
[45,46]. While H3K36me3 epigenetically marks actively transcribed 
genes, which play a role in DNA repair, chromatin structure 
modulation during elongation, and stem cell regulation, SETD2 
may represent a novel tumor suppressor gene, which contributes to 
tumor progression. The existence of SETD2 mutations in a number 
of human tumors suggests that disruption of the SETD2-H3K36me3 
pathway is a distinct epigenetic mechanism for tumorigenesis, 
thereby providing a new target for the development of cancer 
diagnostics and therapeutics [47-52]. According to our unpublished 
data, expression of SETD2, together with H3K36me3, was remarkably 
reduced in colon cancer tissues, and conversely associated with 
tumor progression and patient survival. It was also reported that the 
depletion of SETD2 activated Wnt/β-catenin signaling through the 
modulation of alternative splicing, which could then contribute to the 
development of colorectal cancer [53].

DOT1L, a HKMT without a SET domain, which specifically 
mono-, di- and tri-methylates H3K79, is involved in colorectal 
cancer, leukemia, and dilated cardiomyopathy [54]. DOT1L is 
necessary for hematopoietic malignancies owing to oncogenic fusion 
proteins MLL-AF10 and CALM-AF10, among others, and activates 
the Wnt pathway through binding TCF4 and β-catenin, which are 
Wnt transcription factors [32,55,56]. Inhibitors of DOT1L have 
demonstrated promising therapeutic effects in preclinical colorectal 
cancer treatment [57]. One of the inhibitors, EPZ-5676, which can 
catalyze the mono-, di- and tri-methylation of H3K79, is now in 
clinical trials for MLL-rearranged leukemia [58].

PRMTs: Many PRMTs are associated with different types of 
cancers. For instance, PRMT1 constitutes the majority of arginine 
methylations of the PRMT family and specifically mediates di-
methylation of H4R3 [19]. In gastric tumors, PRMT1 is associated 
with a poor prognosis and relapse after adjuvant chemotherapy. 
Moreover, PRMT1 is a promising therapeutic target for treating 
refractory gastric tumors [59]. Additionally, PRMT5 mRNA levels 
are significantly higher in gastric tumors than the corresponding 
adjacent normal tissues and PRMT5 enhances the malignant 
phenotype of gastric cancer cell lines. It may serve as a biomarker for 
patient stratification and a potential target for therapy [60]. PRMT5 is 
also over expressed in colorectal cancer cell lines and patient-derived 
primary tumors, correlated with increased cell growth and reduces 
overall patient survival. PRMT5 regulates the levels of H4R3me2s 
and H3R8me2s methylation on FGFR3 and eIF4E promoters, leading 
to a decrease in their expression [61]. In addition, other PRMTs, 
including PRMT2 and PRMT6, are overexpressed in colon, gastric, 
breast, and lung cancers [62].

HDMs: Histone methylation markers can be removed by a variety 
of enzymes, with markers at specific histone tail residues interacting 
with distinct histone lysine demethylases (K-demethylases). 
K-demethylases can be divided into 2 classes: Lysine-specific 
demethylase 1 or 2 (LSD1/KDM1A and LSD2/KDM1B) and Jumonji 
(JmjC)-domain groups.

Lysine-specific demethylase 1 or 2: Lysine-specific demethylase 
1 or 2 is highly expressed in many tumors, including colorectal, 
prostate, lung, and breast cancers, as well as neuroblastomas, and 

Figure 1: Histone modifications and associated histone-modifying enzymes 
that have been reported in tumorigenesis.
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is associated with a poor prognosis [63]. LSD1 is a K-demethylase 
that targets H3K9 and H3K4 methylation which has recently shown 
to be overexpressed in estrogen receptor-negative breast cancer, 
mesenchymal tumors, and bladder cancers [64-67]. In solid tumors, 
LSD1 knockdown is shown to inhibit cell proliferation of several 
cancer cells [32]. Deletion of LSD1 leads to a reduced colorectal 
cancer cell proliferation. It has also been implicated in targeting 
p53 and DNMT1 (DNA methyltransferase 1), downregulating the 
expression of CDH-1 by epigenetic modification, and consequently 
promoting metastasis of colon cancer cells [68,69].

Although more researches are needed to further understand the 
functional consequences of dysregulation of histone methylation, it is 
clear that K-demethylases and K-methyltransferases play important 
roles in gastrointestinal tumorigenesis and could be novel targets for 
cancer therapy. Several inhibitors of LSD1 have been used in clinical 
trials, including TCP and GSK2879552, which are aimed at treating 
AML and MDS [58].

Histone acetylation
Unlike histone methylation, histone acetylation is associated 

with transcriptional activation since it occurs on lysine residues 
and is believed to neutralize the charge of positively charged 
histones, thereby decreasing their interactions with negatively 
charged DNA, thus enhancing transcription [70]. Histone 
acetylation plays an important role in transcription activation, cell 
cycle regulation, and DNA repair. An imbalance between histone 
acetylation and de-acetylation has been observed in various cancer 
types, leading to aberrant gene expression of oncogenes and tumor 
suppressors. Histone acetylation is generally achieved by Histone 
Acetyltransferases (HATs), which consist of three distinct families: 
Cyclic AMP Response Element-Binding (CREB) protein (p300/CBP), 
Gcn5-related Acetyltransferases (GNAT), and MOZ, Ybf2/Sas3, Sas2, 
Tip60 (MYST) [70]. HATs from each of these families have been 
shown to play a role in tumorigenesis. A variety of cancers including 
stomach, colon, lung, and endometrial cancers have mutations in 
histone acetyltransferases [71].

HATs
P300/CBP: P300/CBP is capable of acetylation of all four core 

histones [72,73]. Loss of heterozygosity at either p300 or CBP has been 
detected in many cancer cell lines as well as colon, gastric, cervical, 
and breast cancers [72,74-79]. PCAF expression is down-regulated in 
gastric cancer samples and is correlated with tumor invasion, tumor 
size, and node metastasis stage [80]. Many proteins, including p53, 
β-catenin, Myb, Myc, and HIF-1, can interact with P300/CBP, which 
regulates the expression of their downstream target gene [81].

GNAT
Out of the known pathways involved in cancer, the Wnt signaling 

pathway, commonly dysregulated in tumorigenesis, has been shown 
to be augmented by the HAT GCN5 in breast cancer [82,83]. In 
cancer cells, Gcn5 co-activates the expression of oncoprotein E2F1, 
Myc, cyclin D1, and cyclin E, promoting cell proliferation and 
tumor growth [84-86]. GCN5 also activates downstream target gene 
expression by interacting with Myc or E2F1. In human colon cancer 
development, GCN5 plays a positive role and its suppression in cells 
with E2F1 over expression can further facilitate cell apoptosis [87].

P300/CBP-Associated Factor (PCAF), also known as 
lysine acetyltransferase 2B (KAT2B), is another GNAT family 
acetyltransferase and specifically acetylates the histone H3K9 residue. 

Both PCAF mRNA and protein are down regulated in gastric cancer 
cells, which correlates with a poor survival rate. By interacting with 
AE1 and p16, PCAF inhibits gastric tumor growth, promoting 
ubiquitin-mediated degradation of AE1 and p16 translocation into 
the nucleus [88].

MYST
MYST family HATs have been found to be dysregulated in Acute 

Myeloid Leukemia (AML), which form fusion proteins including 
MOZ/CBP, MYST4/CBP, MORF/CBP, and MOZ/p300. Tip60, a 
member of the MYST family, regulates the proliferation, invasion, 
and migration of cancer cells, as well as metastasis, which is down 
regulated in various types of cancers, including colon, gastric, lung, 
and prostate cancers [89-93].

HDACs
Histone deacetylation has been identified as an early step in 

tumorigenesis [94]. Early loss of monoacetylation of histone H4K16 
was found in a mouse model of multistage skin carcinogenesis. 
Additionally, a number of cancer cell lines were found to be 
hypoacetylated, suggesting that histone deacetylation is a widespread 
event in cancer [70]. HDACs are a class of enzymes that can 
antagonize acetylation and have multiple substrates involved in 
many biological processes, including proliferation, differentiation, 
apoptosis, and other forms of cell death. In humans, HDACs have 
been identified and divided into Type I (HDAC1/2/3/8), Type II 
(HDAC4/5/6/7/9/10), Type III (sirtuins), and Type IV (HDAC11), 
based on their homology to yeast HDACs. The role of HDAC is 
complex at different stages of cancer, although there have been some 
HDAC inhibitors approved for T-cell lymphomas treatment.

It has been reported that in gastric, colorectal, prostate, and many 
other cancers, HDACs are overexpressed, which is linked to a poor 
prognosis [95-97]. However, in normal cells, HDACs are reported to 
play tumor-suppressing roles. In gastric tumors, HDAC1 suppression 
up regulates CRADD expression and HDAC1 directly binds to the 
CRADD promoter to suppress the viability of gastric cancer cells 
[98]. In 2008, Godman et al. also found that long-term knockdown 
of HDAC3 led to the inhibition of β-catenin’s translocation to the 
nucleus in cancer cells [99,100]. HDAC3 can also be recruited to the 
RUNX2 promoter by CBX4, which inhibits colorectal tumor cell 
migration and invasion [101]. Over expression of HADC1, HADC2, 
HADC3, HADC5, and HADC7 have been reported in colon cancer, 
linked with the down regulation of genes in the Wnt signaling 
pathway, while HADC4 and SIRT1 are down regulated [102]. It was 
reported that SIRT1 acted as a tumor suppressor in gastric cancer 
through the inhibition of NF-κB signaling [103].

The pattern of HDAC deregulation in cancer cells has provided 
a novel epigenetic target for cancer treatment-the HDAC inhibitors-
which have been widely adopted in the treatment of a number of 
diseases. Currently, suberoylanilide hydroxamic acid (vorinostat), 
romidepsin (Istodax), and belinostat (beleodaq) have been approved 
by the US Food and Drug Administration (FDA) for the treatment of 
cutaneous T-cell lymphoma (SAHA and romidepsin) and peripheral 
T-cell lymphoma (belinostat and romidepsin) [104]. At present, 
more HDAC inhibitors are under investigation at different stages of 
clinical trials, such as resminostat, which is aimed to treat colorectal 
cancer and is currently under the second phase of clinical trials [102].

Other histone modifications
Histone Poly-ADP-ribosylation plays various roles in chromatin 
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structure modulation, DNA repair, and cell division [105,106]. 
This process is mediated by Polymers of ADP-ribose Polymerases 
(PARPs). The dysfunction of PARPs has been found in multiple 
cancers, including colon, breast, laryngeal, and prostate cancers. By 
inhibiting the DNA repair pathway, PARP antagonists enhance the 
sensitivity of cancer cells to radiation and chemotherapies.

Until now, it has not been functionally demonstrated whether 
other types of histone modifications, including SUMOylation, 
biotination, citrullination, and proline isomerization, are involved 
in gastrointestinal tumorigenesis. Further studies are required to 
elucidate their roles.

Conclusion
In this review, we described in detail the roles of histone 

modifications and the related enzymes involved during gastrointestinal 
tumorigenesis. It has been proven that histone modifications result in 
malignant transformation through changes in chromatin structures, 
by regulating oncogenes, or in tumor suppressor expression. The 
dynamic equilibrium of these modifications and their effects play 
key roles in gastrointestinal tumorigenesis. Aberrant histone 
modifications, as well as the associated enzymes, have been widely 
linked to tumorigenesis. Histone-modifying enzymes have been 
the targets of therapeutic agents that are either approved for cancer 
treatment or which are currently under development in clinical trials. 
However, we still lack an understanding of the histone modifications 
involved in gastrointestinal tumorigenesis. Further investigations 
on the mechanisms of epigenetic alterations and their impacts on 
gastrointestinal tumorigenesis will help identify novel therapeutic 
targets and offer new therapeutic choices for cancer treatment in the 
future.
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