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Introduction
Colorectal Cancer (CRC) is one of the most common malignancies [1]. With the changes in diet 

and lifestyle, the incidence of colorectal cancer in China has been increasing significantly. Although 
the level have been continuously improved regard of radiotherapy and chemotherapy techniques 
and surgical procedures, serious adverse reactions will accompany in the course of treatment, and 
furthermore, little benefit can be obtained for the patients with high metastasis and recurrence of 
cancer [2].

Tabung et al. [3] showed that dietary patterns can influence the body's inflammatory state by 
which increases the risk of colorectal cancer. Intake of more pro-inflammatory diets such as red 
meat, processed meat, and animal internal organs increases the risk of colorectal cancer in men 
and women. Liu L et al. [4] showed that diet-related inflammation may promote the development 
of colorectal cancer by inhibiting adaptive anti-tumor immune responses. Apparently, dietary 
patterns affect systemic and local intestinal inflammation, which is related to inflammatory bowel 
cancer. Chronic inflammation interferes with adaptive immune response, which is closely related 
to tumorigenesis.

Plant compounds that are widely found in nature have a good chemopreventive and 
therapeutic effect on tumors. GSPs (Grape Seed Proanthocyanidins), a type of polyphenols that are 
prevalent in nature and found in our daily diets such as fruits, vegetables, nuts, seeds, etc. [5], had 
been reported to have a tumor control efficacy. Given the components in our food, obviously, 
GSPs can be an idea drug for the prevention and treatment of colon cancer. GSPs are flavonoid 
polyphenols extracted from grape seeds, mainly dimers of catechins, epicatechins or catechins and 
epicatechins, as well as some trimers. It is reported that GSPs have some characteristics, which are 
antioxidant, scavenging free radicals [6], protection of cardiovascular [7], anti-inflammatory, anti-
tumor [8-10] and other effects.

Our results showed that GSPs could significantly alter the morphology of SW480 and SW620 
cells and suppress their proliferation for long term treatment. GSPs arrests SW480 and SW620 
cell cycle in G0/G1 phase and promote cell apoptosis significantly. The mechanism by which Akt 
signaling pathway is involved in this process.

Materials and Methods
Materials

Human colon cancer cells SW480 and SW620 were gifted by the Cancer Center Laboratory of the 
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PLA General Hospital. GSPs (≥ 95%) were purchased from Jianfeng 
Natural Product Research and Development Co. Tianjin, China. Fetal 
bovine serum was purchased from Gibco, USA. RPMI1640 medium 
was purchased from Hyclone, USA. Dimethyl Sulfoxide (DMSO) and 
MTT were purchased from Sigma Company, USA. Annexin V-FITC 
cell apoptosis detection kit was purchased from KGI Biotechnology 
Development Co., Nanjing, China. Cell cycle detection kit, cell lysate 
were purchased from Haimen Biyuntian Institute of Biotechnology, 
Jiangsu and China. BCA protein concentration assay kit was 
purchased from Thermo Corporation, USA. Trizol was purchased 
from Invitrogen Corporation, USA. RNA reverse transcription kit 
was purchased from Promega USA. Antibody against β-actin was 
purchased from Easy Bio., USA. Antibodies against Cyclin D1, 
CDK4, Bax and Bcl-2 were purchased from Dr. De Bioengineering 
Co., Wuhan, China. Antibody against Bad was purchased from 
Abcam, USA.

Methods
Cell culture and treatment: Human colon cancer cells SW480 

and SW620 were maintained in (1640) supplemented with 10% fetal 
bovine serum and antibiotics (100 U/ml penicillin G and 100 µg/
ml streptomycin) at 37°C in a humidified incubator containing 5% 
CO2 and 95% air. For experimental group, GSPs was added with the 
final concentration 100 μg/mL and the control group received no 
treatment. The cell morphological state was observed after culturing 
for 48 h.

Cell proliferation assay: Logarithmic growth cells SW480 and 
SW620 were seeded in 96-well plates at 2 × 104/well and different 
concentrations of GSPs were added to the experimental groups 
(20 μg/mL, 40 μg/mL, 60 μg/mL, 80 μg/mL and 100 μg/mL), 6 
replicates for each concentration, and no treatment for the control 
group. Thereafter, 20 µl of MTT solution was added to each well and 
incubated for 4 h. The number of viable cells was measured in a 96-
well plate at an optical density of 490 nm on a micro plate reader. 
Cells viability were normalized by control and described as the 
relative percentage.

Annexin V/FITC staining. Cells were treated with GSPs (100 
μg/ml) for 24 h, 48 h, 96 h respectively followed by harvesting and 
suspending with 1 × binding buffer (according to the supplier’s 
instructions). Afterwards, the cells were stained with Annexin V and 
PI, followed by incubation on ice for 10 min in the dark. Results were 
analyzed using flow cytometry.

Measurement of cell-cycle distribution: Cells were treated with 
GSPs (100 μg/ml) for 48 h. The cells were then harvested, fixed with 
ice-chilled 70% ethanol, and stored at 4°C overnight. On the next day, 
they were centrifuged at 16,000 × g for 5 min with 1 ml of cold PBS. 
After discarding the supernatant, the cell pellets were stained with PI 
(500 μg/ml) in the presence of RNase A (10 μg/ml) and incubated at 
37°C for 30 min. Cell cycle distribution was analyzed by using flow 
cytometry.

RNA isolation and reverse transcription: RNA from cell lines 
was isolated using TRIzol reagent; cDNA was prepared from 1 μg 
of RNA according to the manufacturer’s instructions and stored at 
-20°C until used.

Real-time quantitative PCR analysis: Real-time PCR was carried 
out to measure the level of gene expression in both colon cancer cell 
lines. Real-time PCR was performed in 20 µl final volume by using 
10ul of 2 ×  iQ™ SYBR Green Super mix, and 7 µl of nuclease-free 
water, 2 µl of cDNA, 0.5 µl forward primer and 0.5 µL reveres primer.

Cycling conditions: 95°C for 30 sec, followed by 40 cycles of 94°C 
for 5 sec, 60°C for 5 sec and 72°C for 25 sec. Triplicate qPCR reactions 
were performed for each cDNA sample for all experiments.

Western blotting analysis: Cells were harvested and lysed with 
RIPA buffer, and collected protein samples were quantified by using 
Pierce BCA Protein Assay Kit. Equal amounts of protein samples 
were loaded onto SDS/polyacrylamide gels. After running, the gels 
were transferred onto NC membranes followed by incubating with 
5% skim milk (blocking solution) at room temperature for 1 h, 
and primary antibodies (Anti-β-Actin, -CDK, -cyclin D1,-Bcl-2, 
-Bad, -Bax,-Akt, -p-Akt) at 4°C overnight sequentially. On the next 
day, the membranes were incubated with Horseradish Peroxidase 
(HRP)-conjugated secondary antibodies at room temperature for 
1 h. Enhanced chemiluminescence was used to detect proteins 
immobilized on membranes.

Figure 1: GSPs inhibited the proliferation of SW480 and SW620 cell.
(A) The cell viability of SW480 cell treated with various concentrations of 
GSPs for 24 h, 48 h, and 72 h. (B) The cell viability of SW480 cell treated with 
various concentrations of GSPs for 24 h, 48 h, and 72 h.*p<0.05, **p<0.01

Figure 2: GSPs significantly changed the cell features.
(A) SW480 cells control. (B) SW480 cells treated by GSPs with 100 μg/mL. 
(C) SW620 cells control. (D) SW620 cells treated by GSPs with 100 μg/mL. 
(Scale bar, 100 μm).
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Statistical analysis: All experiments were performed in triplicates; 
data are presented as mean ± Standard Deviation (SD). Statistical 
analysis was performed using SPSS19.0. Values were considered 
significant when p<0.05.

Results
GSPs inhibited the proliferation of SW480 and SW620 

cell: SW480 and SW620 cells were treated by GSPs with different 
concentrations for 24 h, 48 h and 72 h, respectively. As shown in 
Figure 1, GSPs could suppress the proliferation of both SW480 and 
SW620 significantly for long term (48 h and 72 h) treatment, even 
that displayed a growth-promoting phenomenon for short term (24 
h) treatment. The inhibiting rate was significant difference in low
concentration comparing with high concentration (more than 60 μg/
mL).

GSPs induced alteration of cells phenotype: SW480 and SW620 
cells were treated by GSPs for 48 h, and the morphological changes 
of the two cells were observed. As shown in Figure 2, comparing with 
control, the cells phenotype was changed significantly in experiment 
groups, which were enlarged, mostly round and irregular.

GSPs facilitated apoptosis of SW480 and SW620 Cells: To 
investigate the effect of GSPs on cell apoptosis, the SW480 and 

SW620 cells treated by GSPs were subjected to measure by flow 
cytometry at different time points (24 h, 48 h, and 72 h) with Annexin 
V/PI staining. The results showed that GSPs can promote apoptosis 
of SW480 and SW620. As shown in Figure 3, the number of apoptotic 
cells of SW480 and SW620in GSPs group was increased significantly 
compared with the control at three time points, and most obvious 
effect is observed at 48 h.

GSPs altered cell cycle of SW480 and SW620 cells: To 
investigate the effect of GSPs on cell cycle, SW480 and SW620 cells 
were treated by GSPs (100 μg/mL) for 48 h and subjected to detect by 
flow cytometry. As shown in Figure 4, G0/G1 arrest was observed in 
both GSPs treated cells. The expressions of CDK4 and cyclin D1 were 
identified and shown a significant decrease in GSPs groups.

Akt signaling was involved in GSPs regulation in SW480 
and SW620 cells: Given Akt signaling was the key pathway in the 
regulation of cell growth and apoptosis; we identified some key 
components in them further. The expression and activation of Akt 
were investigated and showed that GSPs could down-regulate Akt 
as well as suppress its activation in both SW480 and SW620 cells, 
as shown in Figure 5A. The ratios of p-Akt/Akt were calculated and 
shown a significant decrease in GSPs treatment group as shown in 
Figure 5B. The expression of both Bad and Bax was up-regulated by 
GSPs in SW480 and SW620 cells, whereas Bcl2 was down-regulated, 
as shown in Figure 5C, 5D. Compared with control, GSPs elicited 
significant decrease of ratios of Bcl-2/Bax as shown in Figure 5E. 
The cleaved-caspase 9 and cleaved-caspase 3, the key components in 
apoptosis, were identified to be increased significantly, as shown in 
Figure 5F.

Discussion
GSPs as a dietary plant supplement, the effect on colon cancer 

cells of SW480 and SW620 was investigated and showed that GSPs 
could affect the biological characteristics of SW480 and SW620 
significantly, e.g.: altering cell phenotype and cycle, inhibiting 
cell proliferation, promoting cell apoptosis. Consistently, this 
phenomenon is also observed in tongue squamous carcinoma cell 
Tca8113, which GSPs elicited a dose-dependent decrease of cell 
viability [11]. Still, other cancer cells of cervical cancer and pancreatic 
cancer also displayed the same results when they were treated by GSPs 

Figure 3: GSPs facilitated apoptosis of SW480 and SW620 cells.
(A) The plot of SW480 and SW620 treated by GSPs (100 μg/mL) for 24 h, 
48 h, and 72 h, respectively. (B) By normalizing with the control, the 
apoptotic rates in different GSPs groups were calculated in SW480 cells. 
(C) By normalizing with the control, the apoptotic rates in different GSPs 
groups were calculated in SW620 cells. *p<0.05, **p<0.01

Figure 4: GSPs altered cell cycle of SW480 and SW620 cells.
(A) The cells numbers in G0/G1 phase were increased in GSPs-treated 
SW480 cell. (B) The cells numbers in G0/G1 phase were increased in GSPs-
treated SW620 cell. (C) GSPs suppressed the expression of CyclinD1 and 
CDK4 in SW480 and SW620.*p<0.05, **p<0.01
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[12,13]. This phenomenon was also observed in different tumors that 
GSPs induces apoptosis of nasopharyngeal carcinoma [14], breast 
carcinoma [15], human epidermoid carcinoma [16] and colorectal 
cancer [17]. Furthermore, tumor xenograft experiments have shown 
that GSPs also induce apoptosis in cervical cancer cells in vivo [12].

Annexin V/PI staining analysis by Flow cytometry showed that 
GSPs can cause G0/G1 arrest and induce apoptosis in both SW480 
and SW620 cells. Consistently, it was reported that Grape Seed (GSE) 

Figure 5: Akt signaling was involved in GSPs regulation in SW480 and 
SW620 cells.
(A) GSPs suppressed the expression and activation of Akt in both SW480 and 
SW620 cells. (B) The ratios of p-Akt/Akt in different groups were calculated 
and plotted. (C) GSPs down-regulated Bcl-2 and up-regulated Bad and Bax 
in SW480 and SW620 cells detected by qPCR. (D) GSPs down-regulated 
Bcl-2 and up-regulated Bad and Bax in SW480and SW620 cells detected 
by Western blotting. (E) The ratios of Bcl-2/Bax in different groups were 
calculated and plotted. (F) The cleaved-caspase-3 and cleaved-caspase-9 
were detected in different groups.*p<0.05, **p<0.01.

and Grape Skin (GSK) combined treated ehrlich ascites carcinoma 
in vitro could result in a significant increase of G0/G1 population 
(diploid DNA content) [18]; Grape Seed Proanthocyanidin Extract 
(GSPE) caused a block in the G1 phase and inhibited human bladder 
cancer BIU87 cell growth [19]; GSPs induced G1 arrest in melanoma 
cells (A375, Hs294t), which elicited by miRNA-106b [20].

Given that Cyclin D1/CDK4 plays a crucial role in the G1 phase 
of the cell cycle and appeared an aberrant expression in many tumors 
[21,22], the expression of Cyclin D1 and CDK4 was also investigated 
and shown that GSPs suppressed the expression of Cyclin D1 and 
CDK4 significantly, which may account for the cause of G0/G1 arrest 
and inhibitory of cell growth.

The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway 
is often activated as a cancer driver, leading to the development of 
various cancers, e.g.: renal cell carcinoma [23], breast cancer [24], 
and gastric cancer [25]. A variety of anticancer drugs identified 
for their activities were attributed to inhibit Akt signaling, such as 
Rg3 (ginsenoside) exerted anti-tumor activity in lung cancer cell 
lines A549 and H23 by inhibiting PI3K/Akt signaling pathway [26], 
Oridonin inhibited the OSCC (oral squamous cell carcinoma) tumors 
growth in xenograft nude mice by inhibiting phosphorylation of PI3K 
and Akt significantly [27]. Consistent with these reports, our results 
showed that GSPs suppressed the expression and activation of Akt in 
SW480 and SW620 cells.

As a downstream effector molecule of Akt, Bcl-2 and Bax are 
the most representative molecules of the Bcl-2 family concerned the 
regulation of tumor cells [28]. As same as some anticancer drugs 
identified above, GSPs not only suppressed activation of Akt signaling 
but also regulated expression of some downstream molecules, e.g.: 
down-regulating Bcl-2 and up-regulating Bad and Bax. Further, 
cleaved-caspase 9 and cleaved-caspase 3 as the key components of 
apoptosis were identified to be up-regulated significantly in GSPs 
treated cells of SW480 and SW620. Consistently, with HeLa and 
SiHa cells, Chen et al. [12] showed that GSPs can activate caspase-3 
and facilitate the expression of proapoptotic protein Bak-1, and 
suppress the expression of anti-apoptotic protein Bcl-2.

Taken together, with colon cancer SW480 and SW620 cells, GSPs 
can significantly alter the morphology of the two cells, decrease cell 
proliferation, arrest G0/G1 cell cycle, and increase cell apoptosis. The 
mechanism by which the GSPs altered activation and expression of 
Akt signaling and its downstream molecules. Given the roles of GSPs 
in the regulation of SW480 and SW620 cells, this drug may shed a 
light on prevention and adjunctive therapy for colon cancer.
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