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Introduction
PCa is the United State’s fourth leading cause of cancer death in men and women [12]. In 2017 

there will be 53,670 new cases of PCa diagnosed in the US with an estimated 43,090 deaths [12]. 
Adenocarcinomas make up 85% of all PCa with a range of 10 cases per 100,000 people worldwide 
[13]. It is the 8th leading cause of death from cancer in men and the 9th in women worldwide [13]. 
PCa is rarely diagnosed in persons younger than 40 years of age and has a median age at diagnosis 
of 71. More than 90% of patients diagnosed with PCa will die of it and 70% of these will die from 
metastasis, 30% with bulky primary tumors [14].

PCa risk factors include genetic syndromes, inheritance, family history, tobacco consumption 
and diets high in fat [15]. Some of the biological features associated with PCa are a high rate of 
activating mutations in KRAS (90%), distinct types of precursor lesions, local invasion and distant 
metastasis. Pancreatic adenocarcinoma is characterized with extensive stromal reaction leading to 
hypoxia and like most cancers PCa reprograms cellular metabolism and evades tumor immunity 
[1-18]. Common PCa symptoms include abdominal pain, weight loss, asthenia and anorexia [19]. 
Non-symptomatic jaundice is also a common manifestation of tumors in the head of pancreas and 
about 50% of PCa patients have diabetes [20]. To determine initial stage and treatment, abdominal 
CT is used to detect the arteries and veins involved [21].

The nature of the pancreatic tumor microenvironment makes it one of the most drug resisting 
cancers due to a dense stroma consisting of proliferating myofibroblasts (pancreatic stellate cells), 
type I collagen, hyaluronic acid, inflammatory cells, macrophages, mast cells, lymphocytes, and 
plasma cells. Additionally, the factors produced in the stroma such as connective-tissue growth 
factors promote survival of tumor cells [22]. The treatment of PCa depends on vessel involvement 
and metastasis. Surgery is the only potentially curative therapy with high success rate in resectable 
PCa stage 1 and 2. Only 15-20% patients are candidates for curative surgical resection [14]. Due 
to poor outcomes associated with surgery, adjuvant therapy is also used. Chemotherapy-using 
Gemcitabine or Fluorouracil improves survival. Multi-agent chemotherapy regimens such as the 
combination of fluorouracil, irinotecan, oxaliplatin, leucovorin (FOLFIRINOX) and gemcitabine 
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Abstract
Important to pancreatic cancer (PCa) diagnosis and management is to determine an optimal 
combination of clinical indicators or biomarkers that could detect tumors early with high specificity/
sensitivity and with limited invasiveness. In spite of the availability of a plethora of gene products 
considered as promising PCa biomarkers, it is recognized that their combined use with the available 
clinical information is still insufficient for early diagnosis and for guiding individualized therapeutic 
interventions and predicting outcomes [1]. Their main limitation is that they require invasive 
procedures such as biopsies. However, there is growing interest in using proteomics approaches 
to identify tumor-derived serum microvesicles called exosomes and their content, as serological 
biomarkers [2-8]. This interest stems from the notion that these blood components are considered 
“sensors” of molecular events associated with tumorigenesis [5,9,10]. One such target that may 
prove useful in early detection from PCa patient serum or plasma is the newly recognized exosomal 
protein Survivin [11] and its alternative splice variants. Validation that serum exosomes contain a 
specific panel of survivin splice variants may provide not only a cancer-specific marker of cancer but 
a means to identify disease in a non-invasive manner.
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plus albumin bound paclitaxel particles (nab-paclitaxel) have been 
shown to be more effective compared to single drug therapies [23]. 
Although FOLFIRINOX has been proven to provide better outcomes 
than single drug therapies, its ability to induce a resectable conversion 
was only 20% of all locally advanced PCa patients who were treated 
[23]. Additionally, toxicities were observed in patients who received 
this regimen. These results suggest that there is still need for further 
experimental therapy investigation for PCa. At present, numerous 
efforts are being made to improve treatment strategies for metastatic 
PCa, such as the search for new antimetabolite drugs, as well as using 
combinations of therapeutic agents.

Inhibitors of Apoptosis and Their Potential 
as Therapeutic Targets

Cancer is a disease that has acquired a number of molecular, 
biochemical and cellular changes which is common in most, even all 
types of cancer. These changes affect normal cellular physiology, are 
essential for malignant growth. The changes include independence 
from growth signals, loss of sensitivity to antigrowth signals, 
resistance to apoptosis, unlimited ability to replicate, angiogenesis 
maintenance, and invasion of tissue and metastasis [24]. Out of these 
acquired capabilities of cancer cells, we are most interested in the 
resistance to apoptosis. The inhibitor of apoptosis (IAP) family of 
proteins is of special interest, which includes cIAP1, cIAP2, XIAP, 
Livin (ML-IAP), NAIP, Bruce (apollon), ILP-2 and Survivin [25-27].

IAPs are characterized by an ~70 amino acid baculovirus IAP 
repeat (BIR) domain and a RING domain in the C-terminus of 
each family member [25,28]. IAPs are known to be endogenous 
caspase inhibitors [29]. Activated caspase-3, -7 and -9 are inhibited 
by cIAP1, cIAP2 and XIAP by directly binding to the caspases 
using their BIR domains [27,30-32]. Survivin is the smallest IAP 
family member and is the only IAP that has only one BIR domain 
and no RING domain, making Survivin structurally unique among 
the rest of the family [33]. Another unique feature of Survivin is its 
multifunctional role in various cellular activities, which includes the 
regulation of mitosis, protection from cell death, and adaptation to 
stressful environments [34,35]. Survivin is found to be localized in the 
cytoplasm, mitochondria and nucleus, with its subcellular location 
determining its function [36,37]. It has been shown that Survivin’s 
role in the regulation of mitosis is carried out by a nuclear Survivin 
pool [38]. Alternatively, mitochondrial Survivin is able to suppress 
cell death in tumor cell lines and plays a part in tumorigenesis in 
immunocompromised mice [39]. 

IAPs are found over expressed in PCa compared to non-malignant 
pancreatic ductal cells or pancreatic tissues [40,41]. A number of 
approaches have been developed in order to target their expression 
and function in PCa IAP. To date, most have targeted XIAP as it is 
the most broadly expressed IAP and is the most consistent as well 
as potent [42]. These approaches include antisense oligonucleotides 
and RNA interference (RNAi) [26], second mitochondrial activator 
of caspases (Smac) peptides, and small molecule XIAP inhibitors 
[43,44]. Synthetic small molecule inhibitors such as Embelin from 
the Japanese Ardisia herb inhibits Survivin and XIAP resulting in 
increased apoptosis [45].

Survivin in Cancer & Treatment
Survivin expression is normally seen during the embryonic and 

fetal developmental stages, but is either low in expression or absent in 
tissues that are terminally differentiated. Survivin has also been shown 

to be present in highly proliferative adult cells, such as thymocytes, 
CD34+ bone-marrow-derived stem cells, T cells, vascular endothelial 
cells and gastrointestinal tract mucosa. Expression levels of Survivin 
in these cells are significantly lower compared to tumor cells, where 
there is a striking overexpression of this IAP in virtually every cancer 
type. High levels of Survivin expression in cancer cells have been 
associated with dismal prognosis, disease progression, metastatic 
dissemination, therapy resistance and overall dismal disease outcome 
[35,46,47]. Survivin levels were shown to promote radio-resistance in 
colorectal cancer cell lines and siRNA to survivin promoted increased 
levels of apoptosis with activation of caspase 3 and 7 in response to 
radiotherapy [48].

This group also investigated the effect of survivin levels on the 
risk of local relapse in rectal cancer patents. A 6% to 26% increased 
risk difference was observed in low levels of survivin compared 
to high levels [48]. Another study has shown that both Survivin 
mRNA and protein levels were higher in Cisplatin-treated gastric 
cancer cells compared to untreated cells [49]. Both these studies give 
indication that Survivin plays an essential role in chemotherapy and 
radiotherapy resistance, increasing the ability of cancer cells to evade 
apoptosis, thus providing cytoprotection to malignant cells [50].

To date, Survivin is one of the most tumor specific transcriptomes 
[35], and in addition to its presence in both solid tumor and 
hematopoietic malignancy, this IAP makes an exciting target for 
anti-cancer treatment. There have been many efforts in recent years 
to develop novel anti-cancer therapeutics targeting Survivin to both 
inhibit tumor growth as well as increase tumor cells’ sensitivity to 
conventional chemotherapeutic agents [47,51]. Thus far, there are 
numerous strategies to target Survivin from mRNA to protein levels. 
Small molecule inhibitor YM155 acts by inhibiting transcription of 
Survivin mRNA, while anti-sense oligonucleotides, hammerhead 
ribozymes and siRNA are designed to degrade Survivin mRNA and/
or inhibit protein translation. Strategies to inhibit Survivin at the 
protein level include small molecule antagonist sheperdin, which 
prevents Hsp90/Survivin interaction, as well as expression of two 
Survivin dominant negative mutants Cys84Ala and T34A into tumor 
cells introduced by plasmid or viral vectors [47,51].

In recent years, many studies have been accomplished to determine 
whether downregulation of Survivin could reverse chemotherapy and 
radiotherapy resistance in cancer cells. Several groups have shown 
that inhibition of Survivin expression by shRNA, RNAi, as well as 
emodin, a natural compound, re-sensitizes a variety of cancer cells, 
including squamous cell carcinoma of the tongue [50], osteosarcoma 
[52], breast cancer [53], and PCa [54,55] to cisplatin, adriamycin, and 
gemcitabine. All the Survivin based therapies mentioned previously 
have shown to be successful in decreasing Survivin expression levels, 
inhibiting further growth of malignant cells and increasing sensitivity 
to chemo- and radiotherapies.

Survivin Splice Variants
Alternative splicing, or differential splicing, is a regulated process 

during gene expression that results in a single gene coding for multiple 
proteins [56,57]. Inherited and acquired changes in pre-mRNA 
splicing have been documented to play a significant role in human 
disease development and many cancer-associated genes are regulated 
by alternative splicing [57]. Loss of fidelity, variation of the splicing 
process, and controlled switching to specific splicing alternatives 
may occur during tumor progression and could play a major role in 
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carcinogenesis. Splice variants that are found in tumors have clear 
diagnostic value and may provide potential drug targets [56,57]. 
Through alternative splicing, survivin pre-mRNA generates five splice 
variants including what is called wild type survivin itself along with 
survivin 2α survivin 2β, survivin 3α, survivin 3β and survivin delta 
Ex3 [56] (Figure 1). Survivin splice variants have been characterized 
in many cancers such as oral cancers [58], thyroid malignancies 
[59,60], breast cancer [61-66], pituitary tumors [67], acute myeloid 
leukemia, [68] pediatric acute precursor B lymphoblastic leukemia 
[69], colorectal cancer [70], laryngeal carcinoma [71], renal cell 
carcinoma [72], gastric cancer [73], uterine cervical carcinoma [74], 
astrocytoma [75], bladder cancer [76] and PCa [41]. Tabulating 
the presence and abundance of these six splice variants given their 
conflicting anti and pro-apoptotic characteristics (Table 1) could 
prove useful in determining and selecting either one or more to be 
able to predict the presence and aggressive nature of the disease and 
one day this code may be used to identify specific cancers.

Survivin 2α
Caldas et al. [77] first described survivin 2α, in 2005, in different 

malignant cell lines and primary tumors. Functional assays showed 
that Survivin 2α attenuates the anti-apoptotic activity of Survivin. 
It was also shown that Survivin 2α directly interacts and colocalizes 
subcellularly with Survivin during different stages of mitosis. 
Of potential interest is survivin 2α’s high expression in the non-
neoplastic surgical margin with concomitant low expression in the 
malignant thyroid nodule tissue [60]. Furthermore, findings in breast 
cancer showed survivin 2α being the dominant variant of survivin 
expressed in breast cancer [78]. These findings may supply further 
evidence of Survivin 2α’s opposition to wild type Survivin’s role but 
further confirmatory work must be accomplished and Survivin 2α’s 
expression in other tumor types, including PCa, must be studied.

Survivin 2β
Survivin 2β results from the introduction of a 69-bp portion of 

intron 2 forming a new exon 2β [79]. The Survivin 2β protein has a 
molecular weight of 18.5 kDa, possessing a truncated BIR domain, 

and is thus believed to have pro-apoptotic functions with no evidence 
for a role in cell cycle regulation [80]. It has been shown, along with 
Survivin delta Ex3 to dimerize in vitro with its wild type homologue. 
However, it is unable to rescue siRNA-mediated effects of survivin 
depletion [81]. To date, little has been accomplished in dissecting the 
role of Survivin 2β in cancer progression or control and thus further 
evaluation of this splice variant must continue.

Survivin 3α
Survivin 3α contains 78 amino acids made up of 73 amino acids 

from the canonical Survivin protein and 5 additional amino acids 
MRELC [82]. Survivin 3α was found in breast cancer tumors and not 
in marginal tissues [78] and is thus currently considered important 
or indicative of the onset and progression of breast cancer [82]. There 
is therefore a need for more exploration into the role of this splice 
variant.

Survivin 3β
Vegran et al. [83] showed that Survivin 3β induced cancer 

cell resistance to natural killer cell cytotoxicity with a reduced cell 
viability in the Survivin 3β siRNA treated cells. In addition, Survivin 
3β inhibited the apoptotic effect of FASL treatment suggesting that 
Survivin 3β may play a role in cancer resistance to therapy. This 
property might be attributed to its complete BIR domain, as truncating 
the BIR domain prohibited its antiapoptotic affects. Survivin 3β’s 
antiapoptotic abilities was shown to result from its ability to engage 
procaspase-6 [83]. Additionally, siRNA directed to this splice variant 

Figure 1: Survivin splice variants. A Survivin pre-mRNA has 5 exons (1, 2, 2B, 3, and 4) and 6 introns; B Survivin mRNA possesses exons 1, 2,3, and 4; C Survivin 
delta Ex3 (Δex 3) shows a loss of exon 3 and a frame shift with an extension of the reading frame into ORF of 3’ UTR; D Survivin 2β has an additional exon 2β 
inserted between exons 2 and 3; E Survivin 3β has all regular 4 exons plus an additional exon 3β derived from intron 3 (165 bp) and flanked by exon 3 and 4; F 
Survivin 3α retains the intronic sequence of survivin-2β and an additional 32 nucleotides from the intron 2 as a cryptic exon; and G Survivin 2α has exons 1 and 2 
plus 197 (195 are non-coding) nucleotides of the 3’ end of intron 2 leading to an early stop just before exon 2 [82].

Survivin Splice Variant Apoptotic Phenotype

Survivin WT Antiapoptotic

Survivin 2a Proapoptotic

Survivin 2B Proapoptotic

Survivin 3a Believed to be Antiapoptotic

Survivin 3B Antiapoptotic

Survivin ΔEx3 Conflicting between Anti- & Proapoptotic

Table 1: Known apoptotic status of the six survivin splice variants.
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sensitized tumor cells to 5-FU [83]. Like patients expressing Survivin 
wild type, patients with high level of Survivin 3β expression had a 
shorter overall survival [66].

Survivin DeltaEx3
Survivin delta Ex3 lacks exon 3 causing a frameshift to alter the 

C-terminal end of the resulting protein of 137 amino acids instead of 
142 amino acids of the wild type Survivin [79]. Having a disrupted 
BIR domain and the presence of a nuclear localization signal suggests 
that Survivin delta Ex3 prefers to reside in the nucleus [80]. It has been 
shown expressed in at least 13 different types of cancer but unlike its 
wild type isoform Survivin delta Ex3 has been described as having 
conflicting anti- and pro-apoptotic abilities [82,84]. In addition, 
when dimerized with Survivin it supports angiogenesis [85]. All in all, 
this Survivin isoform will continue to draw attention and may serve 
as a diagnostic tool in cancer evaluation and therapeutic monitoring.

Survivin Splice Variants have not Adequately 
been Investigated in PCa

Several studies have looked at the role that survivin plays in PCa 
biology. Glienke et al evaluated the role of increasing concentration 
of curcumin, a turmeric root derivative that has been considered as 
a potential PCa therapeutic agent [86]. In their results, they observed 
a correlation between survivin levels and increasing concentration 
in curcumin treated PCa cells [87]. This suggests that Survivin 
might serve as a target for PCa treatment. Survivin was also shown 
to play a role in radiation sensitivity and cell proliferation in PCa. 
In this study, Survivin transduction in MiaPaca2, the radiosensitive 
PCa cell line, resulted in an increased proliferation and less radio-
sensitivity compared to vector transduced cells. Additionally, Panc1 
cells, the radio-resistant cell line had enhanced radio-sensitivity 
when transduced with dominant negative Survivin gene using RT-
PCR [88]. A study that evaluated the Survivin levels in correlation 
to chemotherapy found that the non-responder group showed high 
Survivin expression. However, this was evaluated in only 14 patients 
and thus no statistical significance [89]. Serum from PCa patients 
expressed higher levels of Survivin compared to serum from healthy 
controls. Additionally, serum Survivin levels were significantly 
associated with tissue Survivin expression. A positive correlation was 
also observed for serum Survivin with clinicopathological factors 
including TNM staging, lymphatic invasion, perineural invasion, 
venous invasion, cell differentiation and recurrence [90]. This study 
also found a correlation between Survivin expression in PCa and 
survival with high expression of Survivin with short survival [91]. 
Although Survivin has been sufficiently studied in PCa, the role of 
Survivin splice variants is yet to be studied in PCa.

Existence of Secreted Membrane Vesicles in 
Cancers

In the past few decades, extracellular vesicles have gained the 
attention of many scientists due to their presence in virtually all bodily 
fluids. According to their cellular biogenesis, there are three types of 
extracellular vesicles: microvesicles, apoptotic bodies and exosomes 
[92,93]. Among these three, exosomes- with a size ranging from 30-
150 nM in diameter are the most studied. These vesicles have been 
shown to contain nucleic acids, miRNA, proteins and lipids [94,95]. 
All cells such as B- and T- lymphocytes, dendritic cells, neurons, 
intestinal epithelia cells as well as tumor cells release exosomes [96-
98]. In particular, human and mouse tumor cells have been shown 
to secrete tumor cell-derived exosomes (TEX), constitutively into 

the extracellular space [99]. The morphology, density and certain 
membrane markers expressed, such as LAMP1, MHC class I, HSP70 
and HSP80, on the released TEX are similar to the dendritic cell-
derived exosomes (DEX) [100]. Despite similarities to DEX, there 
are differences in the molecular profiles and biological roles of TEXs, 
both of which give an indication of the cell of origin [101]. The 
specific protein content found on and within TEX not only reflects 
their origin, but in addition, establishes their functional role [102]. 
TEX secreted from neoplastic cells express diverse tumor antigens, 
which signify the type of tumor cells from where TEXs were released 
[103]. Elevated Glypican homologues have been associated with 
unfavorable prognosis in pancreatic ductal adenocarcinoma [104-
106] and recently, the discovery of Glypican-1 in PCa exosomes has 
produced optimism for early diagnosis possibilities. In vitro, it has 
been shown that TEX released from breast carcinoma cells contain 
HER2, while carcinoembryonic antigen (CEA) was found in the 
exosomes secreted from colon carcinoma cells, and proteins MelanA/
Mart-1 and gp100 that are expressed in melanoma cells are found 
on the released TEX [100,107]. This phenomenon is also evident in 
vivo, where plasma from cancer patients contain membrane vesicles 
that are characterized by the expression of tumor antigens which 
reflect the tumor of origin [108,109]. In PCa, TEX have been reported 
to facilitate the formation of pro-metastatic microenvironment 
in primary cancer tissue through the stimulation of angiogenesis 
[110,111], facilitate epithelial to mesenchymal transition [112], 
enhance tumor cell invasiveness [113], promote vascular destruction 
and invasion [114], regulate energy metabolism by regulating glucose 
uptake [115], and transport oncogenic abilities between different cell 
types [116]. TEX within the tumor microenvironment are aided by 
exosomes secreted from other cellular components of the primary 
PCa tissue [116].

When immunocompetent and nude mice were pre-treated 
with murine mammary TEX, an accelerated growth of the tumor 
was observed [117]. This observation led to various studies to try 
to elucidate the role of secreted membrane vesicles in cancer. TEX 
can be described as “multi-purpose carriers” which have important 
roles in the communication, protection, as well as the exchange of 
genetic information with neighboring cells [118]. The production and 
secretion of TEX is important for the tumor. They serve a protective 
function, have a supportive role in the survival and growth of the 
tumor cells, are involved in the promotion of host tissue invasion 
and subsequent metastasis, and facilitate evasion from the immune 
response [119,120]. Acting in a paracrine fashion, the diverse function 
of TEX is speculated to be due to the various bioactive molecules 
found within and on the vesicles having a strong influence on the 
surrounding environment [103,108,109,21].

The promotion of angiogenesis is due in part to the upregulation 
of Vascular Endothelial Growth Factor (VEGF)  [122] and release 
of matrix metalloproteinases (MMPs) in neighboring, even distant 
endothelial cells, which are brought by TEX containing tetraspanin 
family members [124], epithelial growth factor receptor (EGFR) [124], 
platelet-derived tissue factor (TF) [125] or developmental endothelial 
locus-1 protein [108]. TEX has also been implicated in the further 
growth of tumor by the exchange of genetic material. Functional 
mRNA was detected within exosomes released from glioblastoma 
cells. Neighboring microvascular endothelial cells that take up the 
exosomes and translate the mRNA become liable for further tumor 
growth leading to the stimulation of angiogenesis [122]. In addition, 
tissue invasion and stromal remodeling can be facilitated by proteases 
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and MMP transport and release via exosomes [126,127]. These 
exosomes also provide a protective role to the cancer cells, which can 
be manifested in different ways. Survivin, a member of the inhibitor of 
apoptosis (IAP) protein family, was found to be released from tumor 
cells via exosomes [11]. The protective role of TEX can be attained 
by the accumulation and packaging of chemotherapeutic drugs or 
its metabolites into the vesicles, thus decreasing cellular levels of the 
drug, a factor leading to drug resistance [128,129]. This phenomenon 
has been observed in various cancer cells. Cisplatin enhanced the 
shedding of the vesicle from melanoma cells [130], while doxorubicin 
was found in the exosomes released from ovarian carcinoma cells 
[129]. Despite the beneficial roles of TEX for the tumor cells and the 
tumor microenvironment, TEX can be a useful tool for detecting the 
malignant condition. Serum levels of exosomes taken from cancer 
patients are significantly increased. These vesicles taken from serum 
[131], as well as from malignant tumor fluids, such as ascites fluids 
[132], pleural effusions [100] and urine [4] positively correlate with 
the tumor progression. Unfortunately, the process whereby exosomes 
are purified is quite arduous, making it not only difficult to isolate, 
but also difficult to replicate findings sample to sample [133]. It is 
also difficult, using commercial isolation techniques to use these now 
purified exosomes as treatment modalities [134].

Constitutive and Inducible Vesicle Secretion 
in Cancer and Cancer Therapy

In the tumor microenvironment, various changes are taking 
place, which could affect the release of vesicles, such as exosomes. 
Environmental stress such as chemo- and radio-therapy, can 
modulate TEX release and the biome they contain, inducing the 
tissues to adapt to changes taking place in the microenvironment 
[135]. Tumor cells that have undergone radiation or chemotherapy 
treatment have been shown to increase the release of TEX [136,137]. 
Interestingly, when treated with chemotherapeutic agents, there is a 
significantly enhanced membrane vesicle secretion in chemoresistant 
cells compared to chemosensitive cells. This activity may be a factor 
leading to drug resistance [128,129]. TSAP6 is an important cellular 
component as it regulates the secretion of protein via the non-
classical pathway or the ER/Golgi-independent protein secretion 
pathway needed for the enhanced release of exosomes [136,138,139]. 
Normally, the secretion of exosomes in various cell types happens at 
a low rate. However, when p53 is activated, endosomal compartment 
activities are activated. Simultaneously, there is an increased 
expression of TSAP6, inducing the release of exosomes at a higher 
rate [140]. It is suggested that following p53 activation, exosomal 
release may act as a ‘detoxifier’ to expel unwanted chemotherapeutic 
agents [128-130,139]. Communication to the microenvironment is 
the other proposed role of TSAP6 and exosomal release after p53 
activation, which may act as a warning signal to the neighboring 
cells, the immune system, and the extracellular matrix, that there are 
abnormal intracellular events happening [139,140].

TEX can be used as an important biomarker for the disease, which 
will give information not only on the disease progression, but also 
on the tumor type. As previously mentioned, TEX express specific 
tumor antigens, reflecting the protein content of the originating 
tumor, which gives an indication of the tumor type. The content of 
these vesicles can also be useful as markers for the aggressiveness of 
the disease. 

Exosomal Survivin
Survivin is found localized in various subcellular locations. 

Depending on its function, this IAP is shown to be in the cytoplasm, 
mitochondria and nucleus [37,141]. Recently, our lab has discovered 
that Survivin exists in the extracellular space packaged in exosomes 
[142]. In addition we have shown that the extracellular pool of 
Survivin has the ability to cause neighboring cancer cells to become 
resistant to therapy, rapidly proliferate and acquire an increased 
potential to become invasive [142], providing a protective role to the 
neighboring tumor cells [93]. The ability of extracellular Survivin 
to cause these effects in the surrounding cancer cells is no surprise 
as an overexpression of this IAP is seen in virtually every human 
cancer type [35]. TEX as biomarkers can be also used as tools to 
detect malignant conditions. Serum taken from cancer patients had 
an increased level of TEX [126,131], which had a positive correlation 
with the progression of the tumor [93]. In addition to serum, TEXs 
were shown to be isolated from malignant tumor fluids, such as urine 
[4], ascites fluids [143] and pleural effusions [100]. We have recently 
shown that exosomal Survivin may be a useful tool for early detection 
and diagnosis or even monitoring prostate cancer progression. Newly 
diagnosed and advanced prostate cancer patients with high or low-
grade cancer had significantly higher levels of exosomal Survivin 
compared to control subjects or patients with pre-inflammatory BPH 
[144,145].

Survivin Splice Variants in Exosomes
Our lab has for the first time identified some of survivin splice 

variants in exosomes isolated from breast cancer patients' sera. These 
survivin splice variants may prove useful as potential diagnostic 
biomarkers and/or prognostic markers. In our study, survivin 2β 
protein expression levels varied the most among breast cancer 
stages  [63] with little changes in the other variants investigated. 
It will be important to continue to evaluate these splice variants in 
PCa exosomes in order to more fully control and identify pancreatic 
cancers at a time when treatment might be affective.

Conclusion
Most efforts on the identification of candidate PCa biomarkers, 

and on analyzing differences in PCa biology between therapeutic 
sensitive and resistant patients, have emphasized the analysis of 
differential gene expression in tumor tissues, methylation patterns, 
or single nucleotide polymorphisms (SNPs) [146-149]. While these 
efforts are necessary and provide important clues for understanding 
biological mechanisms associated with PCa treatment disparities, it 
is also imperative to develop innovative, non-invasive approaches 
that analyze indirectly and early in the disease process, the molecular 
profile of pancreatic tumors. Small membrane-bound vesicles called 
exosomes constitute the latest mode of intercellular information 
transfer or communication [150,151]. This exchange of molecular 
information is facilitated by their unique composition, which is 
enriched with enzymes, structural proteins, adhesion molecules, 
lipid rafts, microRNAs (miRNAs), RNAs and double stranded DNA 
[150,152]. Importantly, cancer cells have been shown to secrete more 
exosomes than do their normal counterparts indicating that exosomes 
can be used as diagnostic markers and their active secretion has 
functional implications. In addition, genes involved in inflammation 
and autoimmune responses are differentially upregulated in PCa 
patients compared to controls [153-156]. This implies that differences 
in antitumor immune responses may exist between these disease 
groups in pancreatic tumors. We have recently shown Survivin’s 
exosomal presence and the possibility that Survivin-containing 
exosomes, once secreted into the tumor microenvironment have 
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not only the ability to modulate the immune system’s response the 
tumor [157] but that a number of Survivin’s splice variants are also 
exosomally localized [63]. We propose that by better understanding 
the role these TEX and the Survivin splice variants they contain play 
in modulating the pancreatic tumor microenvironment the better 
early diagnosis for this most horrible of cancers may one day become.
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