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Abstract
High-risk Human papillomavirus (HPV) plays a key role in cervical cancer development due 
to its oncoprotein activities. The most frequent genotype in cervical lesions around the world is 
HPV-16, but other types are also founded, and the presence of multi-infection is associated with 
a higher risk of cervical cancer. E5 viral oncoprotein has a large range of tumorigenic attributes, 
including the modulation of microRNAs expression and previous in vitro studies, have found an 
inverse relationship between E5 and microRNA-203, although no direct correlation was reported. 
Therefore, this study aimed to evaluate the profile of HPV infection and the possible correlation 
between E5 and microRNA-203 expression. Eighty-one fresh biopsies classified as normal tissue, 
cervical intraepithelial neoplasia grade (I, II, and III), and cancer were analyzed by qPCR. 83.95% 
of the samples were positive for HPV infection, and HPV-16 was the most prevalent, followed by 
HPV-31, HPV-58, HPV-18, and HPV-33. 29.41% of the samples were positive for more than one 
type (HPV-16 and HPV-31; HPV-16 and HPV58; HPV-31 and HPV-58; HPV-33 and HPV-58; 
HPV-18 and HPV-31; HPV-58 and HPV-18; HPV-16 and HPV-31 and HPV-18). We observed 
an increased expression of E5 in high-grade stages and cancer specimens, while microRNA-203 
showed an opposite expression pattern from E5 mRNA, displaying reduced expression levels 
in cervical intraepithelial neoplasia III and cancer. These results help us to understand the HPV 
infection better, and even with no correlation, E5 may still alter miR-203 indirectly.
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Introduction
HPV is closely related to the development of cervical carcinogenesis, which is one of the major 

cause of death by cancer, and 87% of cases occurs in developing countries [1,2]. More than 90% 
of them are associated with infection by high-risk HPVs [3,4]. In Brazil, as in most parts of the 
world, HPV-16 is the most prevalent [5], but other types were also found in cervical pre-cancer 
lesions and cancer, like HPV-31, HPV-33, HPV-35, HPV-45, HPV-52, HPV-18 and HPV-58 [6,7]. 
Besides the isolated type present in the lesion, the HPV multi-infection by two or more genotypes 
is an important data that must be taken to account for both epidemiologic studies and prevention 
programs. The risk of cervical carcinoma development is higher in a type of specific infection and 
type-specific multi-infection [8].

In order to promote cellular disorder and generation of malignant cells, the HPV genome 
encodes oncoproteins that can act separately or together when their effects become potentiated 
[9]. Such oncoproteins offer a wide range of interactions with regulatory proteins of the cell cycle, 
proliferation, differentiation, immune system, and cell metabolism. All these systems modified 
cooperate to cervical cancer generation at the last stage [10].

Among the oncoproteins, E5 was considered absent in cervical carcinoma due to its loss during 
viral integration into the host genome [10,11]. This integration is an established necessary step for 
persistent infection and because of that, E5 would only exert its potential in the progression of 
cervical lesions at early stages of infection [12-14]. Contradictorily, some studies showed that E5 was 
present in part of the studied samples, even after viral integration, in precancerous and cancerous 
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lesions [12,13].

As a consequence of viral oncoproteins activities, it was observed 
aberrant profile levels of some microRNAs (miR) in cervical neoplasia 
[1,15]. MicroRNAs are regulatory RNAs with a large scale of effects 
upon de expression of many genes at a post-transcriptional level. 
Some miR acts as tumor suppressors, like miR-203, and they act in a 
large number of human neoplasia through direct inhibition of gene 
products as ΔNp63, AKT2, Src, RUNX2 and ABL1 [16,17]. In normal 
cervical conditions, the expression levels of miR-203 increase from 
the basal to the upper layer, presenting higher expression in the most 
differentiated cells [18,19].

Greco et al. [14] evaluated the expression of several miR in HaCaT 
cells, and found altered expression of some miR in cells expressing 
E5. They observed that miR-203 was down-regulated when E5 
oncoprotein was present. Few studies have included miR-203 and 
E5 expression at all stages of carcinogenesis (CIN I, CIN II, CIN III, 
and cancer), and none of them, until our knowledge, have evaluated 
the correlation between them in clinical samples with multi-infection 
complimentary analysis.

Materials and Methods
Patients and samples

Eighty-one cervical biopsies were collected from the Institute of 
Medicine - Professor. Fernando Figueira (IMIP) and Clinical Hospital 
of UFPE (HC-UFPE), after patients, signed consenting terms. All the 
women were between 18 and 70 years old and were from the north-
east of Brazil.

All grades of cervical lesions specimens were obtained: Cervical 
intraepithelial neoplasia I - CIN I (n=19), cervical intraepithelial 
neoplasia II - CIN II (n=20), cervical intraepithelial neoplasia III - CIN 
III (n=19) and cancer (n=14). A control group without lesion or HPV 
infection (n=9) was also obtained. RNA later solution (Qiagen) was 
used for the preservation of fresh biopsies and stored at -80ºC until 
the extraction procedure. Women with Human Immunodeficiency 
Virus (HIV) and/or pregnant were excluded from this study.

All procedures performed were in accordance with the ethical 
standards of the institutional Research Ethics Committee of the Federal 
University of Pernambuco, Brazil, (Number: 03606212.7.0000.5208) 
and with the 1964 Helsinki declaration and its later amendments or 
comparable ethical standards.

DNA extraction and HPV detection
Extraction and purification of DNA were made by Trizol 

(Invitrogen) and DN easy Blood & Tissue Kits (Qiagen), respectively. 
The integrity of the DNA was assured by the amplification of the 
β-globin human gene using the PC04 and GH20 primers [20].

Detection of HPV was made by PCR with MY09/11 primers [21], 
and the genotype was performed by PCR with specific primers for 
the region E7 from 5 specific types previously described as present in 
the region [6,20] (Table 1). After an initial hold at 95°C for 3 min, 30 
amplification cycles were performed (95°C for 15 s and annealing for 
60 s), followed by final elongation step at 72°C for 1 min. Amplicons 
were visualized by UV light after electrophoresis on a 2.5% agarose 
gel stained with ethidium bromide.

RNA extraction and cDNA synthesis
Total RNA extraction was performed. All biopsies (25 mg to 

100 mg) were macerated and homogenized using liquid nitrogen 

and 1 ml de Trizol (Invitrogen). Purification of isolated total RNA 
was performed through miRNA. Absolutely RNA Kit (Agilent 
Technologies) following manufacturer's instructions, which permits 
the recovery of both miRNA and mRNA. The RNA’s quality was 
assured by a NanoDrop 2000 Spectrophotometer (Thermo Scientific 
Wilmington, USA) and electrophoresis on a 1% agarose gel [22-
24]. Next, 1 μg of purified RNA of adequate quality (an OD260/280 
from 1.8 to 2.1 and intact rRNA subunits - 28S and 18S) was used to 
synthesize cDNA by means of miScript II RT kit (Qiagen). For each 
sample, a negative control RT reaction (no Reverse Transcriptase 
enzyme) was prepared.

Primers: Design and efficiency estimation to qPCR
Primers for genotyping and E5 detection were designed through 

CLCbio Main Workbench software version 5.7.1 (QIAGEN). For E5 
detection and quantification the primers sequences were: E5 HPV-16 
(F: A C T G G C T G C T T T T T G C T T T G; R: G A C A C A G A 
C A A A A G C A G C G G); E5 HPV-18 (F: C G C T T T T G C C A T 
C T G T C T G T; R: A C A C A A A T A C C A A T A C C C A T G C) 
E5 HPV-31 (F: G C T G T C T G T G T C G G T A T A T; R: A A A A 
C A A C G T A A T G G A G A G G); E5 HPV-33 (F: C T A T G C T T 
G G T T G C T G G T G T; R: G A G A T C C C A C A A A C A C C C 
A A A); E5 HPV-58 (F: G G G T C G G C T C T A C G A A T T T T; R: 
C T T G T T G G G T T A A G T A T T G T G C). MicroRNAs primers 
were obtained from miScript primer assay (Qiagen). All reference 
genes used to acquire miR-203 expression levels (miR-191 and miR-
23a) and E5 HPV 16 (GAPDH and ACTB) were previously validated 
in cervical tissues [23]. Primer pair’s efficiency was evaluated by serial 
dilution of 10 potencies, and it was used as an actual cDNA of an 
HPV positive cervical sample to exemplify the real assay condition.

Real-time qPCR for E5 mRNA and miR-203
E5 mRNA and miR-203 from normal and all stages of 

carcinogenesis (CIN I, CIN II, CIN III, and cancer) were quantified 
using Quanti Tect SYBR Green PCR kit (Qiagen)and the amplification 
performed by Rotor-Gene 6000 thermocycler (Qiagen, Hilden, 
Germany). This way, the geometric mean of GAPDH and ACTB 
reference genes was used to calculate the relative expression of E5 
from HPVs mRNA, and the same was done regarding miR-203, using 
miR-191 and miR-23a as reference genes [25]. Every qPCR reaction 
was performed in duplicate for each sample [26]. Additionally, no 
template controls were added to detect contamination. For more 
details about qPCR assay, see Leitao et al. [23].

Statistical analysis
Statistical analysis was performed using Graph Pad Prism (version 

5.0) and Stata/SE (Version 12.0) software. Shapiro-Wilk test was 
made to determine if the data has or has not a Gaussian distribution. 
Kruskal-Wallis test and Dunn’s comparison test were conducted to 
compare the expression levels in all tissue conditions at the same 
time. Correlation between E5 mRNA and miR-203 expression was 
evaluated by the Spearman correlation test. P-values lower than 0.05 
were considered statistically significant.

Results
Detection, genotype, and multi-infection

Sixty-eight samples from patients with cervical lesions were 
positive for one or more than one type of HPV, and thirteen samples 
with lesion were negative for HPV infection (2NIC I, 6 NIC II, 2NIC 
III, and 3 Cancer). The HPV 16 was the most prevalent, followed 
by HPV-31, HPV-58, HPV-18, and HPV-33 (Table 2). A total of 20 
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samples were positive for more than one HPV type, and the most 
common multi-infection type was HPV-16 and HPV-31 followed by 
HPV-16 and HPV-58; HPV-31 and HPV-58; HPV-33 and HPV-58; 
HPV-18 and HPV-31; HPV-58 and HPV-18; HPV-16 and HPV-31 
and HPV-18 (Table 3).

mRNA expression profile of E5 oncogene in clinical 
specimens

E5 HPV mRNA expression profile was evaluated comparing all 
lesion groups simultaneously and also comparing two groups by 
turn. From the most incident to the least, E5 HPV-16 was detected 
in 29 samples from the 35 that were positive for HPV-16 (9 CIN I, 3 
CIN II, 10 CIN III, and 7 cancer). There was a significant statistical 
difference between the E5 HPV-16 expression among the groups 
studied (p=0.0041). The oncoprotein showed a progressive rising 
from CIN I to cancer and differential expression between CIN I and 
CIN III (p<0.001); CIN I and cancer (p<0.01); CIN II and CIN III 
(p<0.05) (Figure 1).

E5 HPV 31 mRNA was detected in 10 samples of the 27 positives 
for HPV 31(1 CIN I, 3 CIN II, 3 CIN III and 4 cancer). The expression 
increased from CIN I to CIN II, followed by a decrease in CIN III 
and then was up again in cancer. No statistical difference was found 
between the lesions groups.

From the 13 samples positive for HPV 58, the E5 oncogene 
was detected in 6 (1 sample CIN II and 5 CIN III). Because of the 
small number of E5 positive samples, no statistical analysis could be 
performed.

In both HPVs, 18 and 33 samples were detected E5 mRNA in 
2 samples, each one. Due to that, no statistical analysis was applied.

Expression profile of miR-203 in clinical specimens
The statistic evaluation methods applied were the same used 

for E5 mRNA. At first, Kruskal-Wallis test showed no significant 
difference between all groups. Evaluating two groups by two through 
Dunn’s test, we observed a decreased expression level of miR-203 

Primers Sequence Amplicon Annealing temperature

HPV 16 F:AGCTCAGAGGAGGAGGATGA R:GAGAACAGATGGGGCACAAC 199 pb 60°C

HPV 18 F:CAACACGGCGACCCTACAA
R:AGCATGGGGTATACTGTCTCT 170 pb 52.5°C

HPV 31 F:CGTTTTCGGTTACAGTTTTACAAGC 
R:AGCTGGACTGTCTATGACAT 728 pb 55°C

HPV 33 F:ACTGAGGAAAAACCACGAAC R:GATAAGAACCGCAAACACAGT 200 pb 61°C

HPV 58 F:GAAATAGGCTTGGACGGGC R:GTTCGTACGTCGGTTGTTGT 131 pb 60°C

Table 1: Primers and annealing temperature for HPV genotype.

HPV Lesion stage 16 31 58 18 33

Numberof samples

CIN 1 9 9 3   1

CIN 2 7 7 3 2 1

CIN 3 9 7 7   1

Cancer 10 4   1  

Table 2: Positive samples for each HPV type most frequent in north-east of 
Brazil.

HPV Lesion stage 16/31 16/58 31/58 33/58 18/31 58/18 16/31/18

Number of samples

CIN 1 2 1 2        

CIN 2 2 1       1 1

CIN 3 2 2 1 1      

Cancer 3       1    

Total 20 9 4 3 1 1 1 1

Table 3: Multi-infection profile.

Figure 1: Quantitative relative expression of E5 HPV-16 in precancerous and 
cancerous lesions. The applied statistical tests were Kruskal-Wallis, which 
compares all groups simultaneously (p=0.0041) and Dunn’s comparison 
test to compare the expression between two groups. Significant p values 
were obtained when comparing: CIN I vs. CIN III (p<0.001); CIN I vs. cancer 
(p<0.01) and CIN II vs. CIN III (p<0.05).
*p<0.05; **p<0.01; ***p<0.001

Figure 2: Quantitative relative expression of microRNA-203 in normal, 
precancerous, and cancerous lesions. The applied statistical test was 
Kruskal-Wallis and Dunn’s comparison test. Kruskal-Wallis test showed 
no significant difference between all groups however, Dunn’s test showed 
different expression profiles between normal vs. CIN I and normal vs. cancer 
showed statistical significance (p=0.05).
*p<0.05; **p<0.01; ***p<0.001
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with statistical significance between normal group vs. CIN I (p<0.05) 
and normal group vs. cancer (p<0.05) (Figure 2).

Correlation between the relative expression of E5 and 
miR-203 in clinical specimens

We applied the Spearman correlation test to evaluate the supposed 
association between the expression of E5 mRNA and miR-203. Due 
to the number of samples positives for E5 from HPV 58, 18, and 33, 
no correlation analysis could be performed.

No correlation was observed between E5 HPV 16 and miR-203, 
for p<0.05 (Table 4).

The analysis of the correlation between E5 HPV 31 and miR-203 
was also performed, but without de CIN I group due to the lower 
number of E5 samples. Also, no correlation was found for p<0.05 
(Table 5).

Discussion
HPV multi-infection in cervical biopsies

The most prevalent HPV types in the northeast population of 
Brazil were found in the studied samples, and all of they are high-
risk HPV types linked to a higher probability of cancer formation [6]. 
Besides that, the presence of two or more HPV types is often founded 
in cervical cancer patients, and women with multiple types of HPV 
have a higher prevalence of abnormal cytology [27]. In our data, 
29.4% of infected patients presented infection by two HPV types at 
the same time - HPV-16 and HPV-31; HPV-16 and HPV-58; HPV-31 
and HPV-58; HPV-33 and HPV-58; HPV-18 and HPV-31; HPV-58 
and HPV-18 or by three HPVs - HPV-16 and HPV-31 and HPV-18. 
A study in India found that HPV multi-infection is associated with a 
higher risk of cervical cancer development, and infection by two or 
more types excluding HPV-16 and HPV-18 had an Oddis Ratio (OR) 
of 5.87 and 2.5, respectively. Also, multi-infection by HPV α9 (such 
as HPV-16, -31, -33, -58) have an OR=5.3 and by α7 (like HPV-18) 
an OR=2.5 [8].

The multi-infection by those HPVs not covered by the vaccines 
has 2.94 folds higher chance to lead to cervical carcinoma; luckily 
the most founded types in the population are targeted by both 
Gardasil and Cervarix vaccines. Interestingly, HPVs from different 
phylogenetic branches in the multi-infection situation is negatively 
associated with cervical cancer, which in our results are the least 
prevalent types combined -HPV-18 and HPV-31; HPV-58 and HPV-
18 [8].

Even with vaccine coverage, a significant number of women are 
not protected since the vaccination in Brazil is only for girls between 
the age of 9 and 14 years old and because there no effect against 
installed infection. Other combat methods have been developed; 
however, most of them are based on specific HPV type's oncoproteins 
or capside [28-30]. Therefore, profile studies in each world population 
must be taken into account as part of a prognostic measure and 
therapeutic new approaches that target specific HPVs oncoproteins.

Expression profile of E5 in clinical biopsies
All oncoproteins play critical roles in cervical lesion development 

and carcinoma, yet E5 requires considerable attention since its 
mechanisms in cervical carcinogenesis are not entirely understood. 
Some reports have observed E5 contribution to carcinogenesis 
by promoting virus replication, cell cycle continuation [31-33], 
inhibition of apoptosis [34], cell adhesion, and motility disruption 
[35,36], EGFR surface expression [37,38] and host immune system 
depression [12,39]. Liao et al. [40], for example, found pieces of 
evidence that E5 supports proliferation, migration, and invasion 
of cancer cells in vitro and cell growth in vivo. Still, little is known 
regarding E5 relative expression in cancer or precancerous lesions.

In this paper, E5 oncogene mRNA expression was measured, and 
it was observed an expression increase as the lesions became more 
severe. There was a statistically significant difference in expression 
between CIN I × CIN III, CIN I × cancer, and CIN II × CIN III. A 
significant difference was found between the relative expression in 
CIN II and CIN III as mentioned above, suggesting that CIN II and 
CIN III lesions have different molecular patterns of infections and 
maybe a form of differentiation in cases of histopathological doubts.

Our results are contrary to those in the literature which points 
that E5 expression is greater in low-grade lesions than in high grade 
and cancer, due to viral genome integration, a known cause of E5 
loss, and thus this oncogene would mostly act in the early stage of 
carcinogenesis [41-44]. This contrast in E5 expression may be due 
to differences in the integration pattern, which is more frequently 
observed in CIN III, in addition to cancer, than in the CIN II stage 
[45]. However, E5 expression was found before in cancer and high-
grade stages in accordance with our findings [46-50]. Hafner et al. 
[48], for example, concluded that E5 expression was not correlated to 
specimen histological grade, but only to viral physical status (whether 
episomal or integrated).

Several hypotheses have been created trying to explain these 
opposite results. The ones who found low expression levels in high 
grade and cancer stages rely on the hypothesis of physical loss of E5 
after viral integration into the host genome. Other researchers who 
defend the activity of E5 in late stages of carcinogenesis explain that 
viral episomal form also exists in high grade and cancer tissue, and 
such cells are responsible for E5 expression.

E5 expression here was not only found in cancer and high-grade 
specimens but was higher at these stages than in low-grade lesions, 

CIN I E5 HPV-16 CIN II E5 HPV-16 CIN III E5 HPV-16 Cancer E5 HPV-16

CIN I miR-203 -0.4285714      

CIN II miR-203   0.7    

CIN III miR-203     -0.0958101  

Cancer       0.086

Table 4: Rho coefficients from the comparison between E5 from HPV-16 and miR-203. No p value was lower than p<0.05.

  CIN II E5 HPV-31 CIN III E5 HPV-31 Cancer E5 HPV-31

CIN II miR-203 0.500

CIN III miR-203   0.500  

Cancer     0.800 

Table 5: Rho coefficients of lesions rates comparison between E5 from HPV 31 
and miR-203. No p-value was lower than p<0.05.
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occurring a gradual increase as lesions become closer to carcinoma 
or total transformation process. Possibly, E5 oncogene also supports 
carcinogenesis at later stages, and the episomeco exists with the 
integrated form in the same cell, helping each other to induce cell 
transformation. Another possibility is that there are cells with 
different HPV status, and the E5 expression increased substantially, 
causing a final relative amount higher than the earlier precancerous 
stages. Cancer and CIN III relative expression data showed a larger 
distribution pattern than CIN II and CIN I groups, with a higher inter 
quartile range and variation coefficient. This attribute is consistent 
with tissues in pre-cancer or cancer state that have many alterations 
and heterogeneity and supports the idea of possible different viral 
forms. Still, another hypothesis may be mentioned. Sahab et al. 
[49] reported that E5 could be expressed even in cells exclusively 
containing integrated HPV genome, what could also explain high 
expression levels of this oncogene in several samples found in studies 
such as Hafner et al. [48], Chen et al. [50] and ours. Previous studies 
that motivate Sahab et al. [49] had already observed E5 transcript in 
cells with an integrated HPV genome [46,51]. It seems that other hot 
spots in the viral genome may represent important fragile sites of 
gene breaking besides E5 and E2.

Variations in results through studies may also be due to other 
reasons derived from different experimental models used as the small 
number of samples in vivo models and the differences in models 
themselves, such as in vitro vs. in vivo, the relative quantitative 
expression method or the chosen standard control used. Furthermore, 
variations between and into populations and between individuals 
(clinical and biological differences) can also alter data insight.

Expression profile of microRNA-203 in clinical specimens
MicroRNAs are essential small molecules for the regulation of 

gene expression and have achieved great importance in cancer study, 
whether in prognostic, diagnostic or in therapeutic approaches. 
In cervical carcinogenesis, there are several key microRNAs that 
regulate the cell cycle, proliferation, differentiation, apoptosis, and are 
distinctly expressed, including miR-203 [52,53]. It has been reported 
that miR-203 expression inhibits cell proliferation, both in vitro 
[54-56] or in vivo [57], and it is known to be critical in controlling 
proliferation and differentiation rate of keratinocytes [53,55,58]. This 
microRNA is specific to epithelial tissue [18] and plays an essential 
role in the development of stratified epithelium [57].

In this work, it was demonstrated that miR-203 relative 
expression levels were decreased in cancers specimens compared to 
normal. The normal group also showed different expression patterns 
with statistical significance when compared to CIN I group. MiR-
203 levels have been reported to be decreased in cancer, in previous 
in vitro and clinical studies. Wilting et al. [56] revealed augmented 
methylation levels in CIN III and in squamous cervical carcinoma 
clinical samples. They also showed increased methylation in cervical 
cancer and HPV immortalized cell lineages, and the methylation 
status was indirectly associated withmiR-203 expression levels in 
vitro.

miR-203 is situated on a CpG island and can frequently undergo 
local DNA hypermethylation. Aberrant miRNA methylation causing 
altered expression profile is frequent in cervical cancer [59-61], 
mostly due to hrHPV presence [1,62-64]. It had been demonstrated 
that HPV-16 oncogenes could regulate fundamental epigenetic 
mechanisms and enzymes, such as DNA methyltransferases - Jimenez-
Wences et al. [65] describes it well - which changes the expression 

profile of central host genes, such as tumor suppressor genes like p53 
and microRNAs [66-69]. These variations cause cell transformation 
and the subsequent cancer event. On the other hand, Wilting et al. 
[56] concluded that miR-203 expression was not correlated to hrHPV 
infection, however hrHPV oncogenes expression were not measured, 
and a detailed evaluation with appropriate data about hrHPV 
influence upon miR-203 expression was absent.

Increased methylation pattern in the miR-203 gene was also 
encountered by Botezatu et al. [1] in biopsy tissues collected from 
patients with cervical precursor lesions and tumors, but they did not 
measure the expression levels of this microRNA. Other studies showed 
significant miR-203 down regulation in high-grade lesions compared 
to the normal cervix [70], in invasive squamous cell carcinoma biopsy 
specimens [71], and in atypical dysplasia and cancer samples [72].

Previous studies evaluated the relative expression of HPV 
oncogenes and miR-203. McKenna et al. [55] observed in cell culture 
models that E6 expression was associated with miR-203 decrease 
through p53 degradation, creating an imbalance on proliferation and 
differentiation rates. They also revealed miR-203 regulation by E7 
following DNA damage and affecting differentiation. E7 activity upon 
miR-203 was also reported before through MAPK/PKC pathway and/
or by a mechanism involving PMA - phorbol 12-myristate 13-acetate 
[53]. In this same study, the authors suggested miR-203 could be 
involved in HPV genome amplification and had its expression 
reduced in cervical cancer, which may justify findings since in the 
cancer group, where the reduction in miR-203 expression levels was 
evident.

MiR-203 over expression has also been demonstrated in cervical 
cancer, including over expression in the serum of patients with 
cervical adenocarcinoma and squamous cervical cell carcinoma 
[72,73,15]. The conflicting results regarding miR-203 expression in 
cancer may be due to the chosen normalization method, among other 
factors, such as differences in the population (e.g. genetic, aging, 
healthy, latent viral infections) or in sample processing, subjective 
lesion degree classification and chosen experimental methods 
(e.g. in vitro × in vivo; Taqman × Syber Green). Data from biopsy 
specimens, for example, have a higher standard deviation than a 
cell model controlled experiment, which has a significant influence 
upon statistical analyses. Leitão et al. [23] showed that the expression 
profile might change depending on which and how many reference 
genes are used. They conclude that, at least, two most stable miRNAs 
or mRNA must be used for proper normalization method and 
expression quantification.

Correlation between E5 and miR-203 expression profiles
Greco et al. [32] observed miR-203 expression in cancer cells 

stably transfected with E5 and concluded that in E5 positive cancer 
cell lines, this microRNA presented lower levels than cancer cells 
negative for E5 from HPV-16. These lower levels of miR-203 raise 
the hypothesis that E5 may act down regulating this microRNA, 
and based on their study, we evaluated the existence of a correlation 
between E5 and miR-203 expression. We evaluated each sample 
expressing E5 of HPV 16 and miR-203 at all stages of carcinogenesis, 
observing any association between different groups of lesions.

CIN I showed a negative Rho coefficient between E5 and miR-
203, indicating opposite expression patterns. The same was observed 
when compared to both CIN III groups, but in this case, E5 mRNA 
expression levels were elevated while miR-203 was decreased. Rho 
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coefficient in CIN II and in cancer compared groups was positive: In 
the first, both targets increased its levels together, and in the second 
group even with a weakly positive value, its visual tendency is for 
a negative relation, with miR-203 decreasing and E5 increasing its 
expression.

None of the comparisons showed statistical significance, which 
can be explained either by the fact that several other molecules are 
interacting with the studied targets or by the real absent correlation. 
Many factors are involved in gene expression in a complex net of 
protein relations. Besides, E5 may have indirectly effect on miR-203 
through several others pathways, like methylation [1,65], disruption 
of miRNA-203 biogenesis (by DROSHA/DICER modulation) at the 
post-transcriptional level [75] or activation of AKT/PI3K pathway, 
that also is targeted by miR-203 [17,76], among others.

Conclusion
Between different groups of injuries: Our results showed the 

down regulation of miR-203 in cervical cancer. Its expression was 
also able to differentiate low grade, CIN I lesion, from normal cervix 
reassuring its possible role as a biomarker. In turn, E5 HPV-16 
demonstrated increased expression in high-grade lesions and cancer 
compared to low-grade ones, which can be useful in differentiating 
the cervical lesions, a challenge for our current method applied, and 
shows that E5 may have an essential role at late stages of infection. 
No correlation between the targets was found, although the indirect 
effect of E5 on miR-203 expression cannot be discarded. In this view, 
miR-203 and E5 are potential candidates for studies aiming for its use 
in the diagnosis, prognosis, and as a target for cervical lesions and 
cancer treatment.
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