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Introduction
In the USA, death rates are stable or decreasing for most forms of cancer, largely due to advances 

in treatment. However, for Pancreatic Ductal Adenocarcinoma (PDAC) increasing incidence more 
than compensates for any tiny improvement in survival and so despite accounting for less than 5% 
of all newly diagnosed cancers, PDAC has grown to become the 4th largest cancer killer [1]. The 
median survival for patients after a diagnosis with PDAC is less than 5 months [2]. Chemotherapy 
with 5-Fluorouracil (5FU) or gemcitabine following surgical resection of primary tumours 
improves prognosis [3,4], but only less than 20% of patients are suitable for surgical resection of 
their tumour [5]. Gemcitabine became the standard of treatment for advanced PDAC due to slight 
superiority over 5FU in patients with advanced cancer [6]. FOLFIRINOX (oxaliplatin, irinotecan, 
leucovorin, and 5FU) is the only non-gemcitabine regime shown to be superior to gemcitabine in 
patients with metastatic pancreatic cancer [7] but its toxicity and side effect profile limit its use to 
patients with a high performance indicator. Targeting cell division by interfering with microtubule 
depolymerisation using albumin-bound paclitaxel (nab-paclitaxel) combined with gemcitabine 
gave modest improvement in Overall Survival (OS) in advanced PDAC [8]. The addition of an 
orally administered precursor of 5FU (capecitabine) to gemcitabine significantly improved response 
rates and Progression Free Survival (PFS) but only showed a trend towards increasing OS in patients 
with advanced cancer [9]. A severely limited repertoire of effective chemotherapeutics in a disease 
characterised by treatment resistance is a major factor contributing to the poor 5-year survival of 
PDAC.

Targeted therapy in PDAC
Targeted therapies have shown significant survival benefit in many different cancer types. It 
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Abstract
Pancreatic Ductal Adenocarcinoma (PDAC) has one of the lowest 5-year survival rates of all cancers. 
Early metastatic spread and failure of standard chemotherapeutics both contribute to this statistic. 
Over the last decade many other cancer types have benefited from the targeted therapy revolution 
in which signalling networks found to be altered in cancer cells are specifically targeted. Despite an 
ever-growing understanding of the mutation profiles in PDAC, the vast majority of these approaches 
have failed for this form of malignancy. Chemotherapy, which simply targets dividing cells, remains 
the most effective available treatment option alongside surgery. Although targeting a broad range of 
tyrosine kinase receptors with erlotinib has been shown to offer a modest improvement in the 5-year 
survival when combined with the pyrimidine-based chemotherapeutic gemcitabine, this suggests 
that targeted approaches may be of benefit in at least some patients. PDAC is characterised by a 
long genomic tail of potentially actionable mutations but each appearing in only a small number 
of patients, making it difficult to show a survival benefit of a targeted therapy in an unselected 
group of patients. Identifying specific subpopulations based on molecular characterisation of the 
tumour is particularly difficult in PDAC because of problems in biospecimen acquisition; only a 
small proportion of patients undergo surgery and the organ is difficult to biopsy due to its location. 
Furthermore, PDAC is characterised by cellular heterogeneity within primary tumours and their 
metastases, meaning that targeted therapies may have only a transient effect, killing dominant 
cellular populations but leaving behind potentially even more aggressive forms of cancer cells that 
have unidentified (and so unexploited) molecular targets. In this review, consideration is given to 
overcoming the barriers of personalised medicine specific to PDAC with the aim of improving the 
5-year survival rates.
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was hoped that similar outcomes would follow for PDAC but most 
trials have failed to demonstrate a survival benefit. For example, 
bevacizumab (a recombinant humanized anti-VEGF monoclonal 
antibody) gave improved Overall Survival (OS) in phase III trials in 
advanced colorectal [10], non-small cell lung [11], renal cell [12], 
and breast cancer [13]. Despite strong pancreas specific pre-clinical 
evidence [14] and an encouraging phase II study [15] no improvement 
in OS was seen in a phase III study in advanced PDAC [16]. Lack 
of response may be due to the pattern of VEGF isoforms present in 
the PDAC patients on the trial. Bevacizumab inhibits angiogenesis 
via VEGF-A but the majority of pancreatic cancer patients have 
high levels of expression of the VEGF-D which can compensate for 
reduced VEGF-A activity. There is evidence that for a small subset of 
patients with low levels of VEGF-D bevacizumab does have efficacy 
[17], unfortunately this is too few patients to allow the benefit to be 
observed in an unselected population.

Conceptually aflibercept offers an advantage over bevacizumab in 
treatment of PDAC because as well as targeting VEGF-A it also acts 
against at least two other members of the VEGF family (VEGF-B, and 
PLGF) [18]. However, aflibercept again gave no survival advantage 
when combined with gemcitabine over gemcitabine alone for 
advanced PDAC patients [19].

An alternative would be to inhibit the receptors rather than 
VEGF itself. Axitinib is a fairly broad range kinase inhibitor but is 
best characterised in terms of its inhibition of VEGF Receptors 1, 
2 and 3 [20], it has also received approval for use in treatment of 
renal cell carcinoma, nevertheless it proved ineffective when used 
in combination with gemcitabine in a phase III trial with advanced 
PDAC [21].

Other targeted therapies with proven effectiveness in several 
cancer types and strong pre-clinical evidence have also failed to show 
improved OS. The following are examples, all of which were used in 
combination with gemcitabine and all of which showed no survival 
benefit:

Tipifarnib targets RAS by inhibiting farnesyl transferases, as 
stated above nearly all PDAC tumours have K-Ras mutations, but 
despite this targeting K-Ras in the clinic has not yet proved successful 
[22]. Including a clinical trial of tipifarnib with gemcitabine [23]. 
Possibly because K-Ras unlike other forms of Ras protein does not 
absolutely require farnesyl transferases to become active (using 
geranyl transferases instead) and perhaps because of the ability of 
cancer cells to survive having lost K-Ras [24].

Marimastat targets Matrix Metalloproteinases (MMPs). MMPs 
are important in the metastatic process that is so characteristic of 
PDAC and so they would appear to be a very suitable target, but 
in combination with gemcitabine marimastat had little or no effect 
on survival [25]. This may be because by the time of treatment the 
cancer had already metastasised and the MMPs were not necessary 
for cancer cell survival.

Cetuximab targets Epidermal Growth Factor Receptors (EGFRs); 
in other cancers, EGFR inhibitors have been shown to be most 
effective in patients with EGFR mutations [26] and without K-Ras 
mutations [27]. In PDAC EGFR is rarely mutated (less than 5% of 
cases) and K-Ras is mutated in over 90% of cases [28,29]. On this 
basis, it seems unlikely that Cetuximab would be effective in PDAC, 
which was confirmed in clinical trials [30].

Sorafenib is a broad-spectrum kinase inhibitor, targeting not only 
tyrosine kinases (e.g. EGFR and VEGF receptors) but also serine/
threonine kinases (e.g. RAF kinase), it could therefore be considered 
as a more likely prospect for PDAC than cetuximab. Nevertheless, it 
was not successful when tested in a clinical trial [31].

Of all the targeted therapy tested to date against PDAC only the 
addition of the tyrosine kinase inhibitor erlotinib to gemcitabine 
provided a significant survival advantage [32]. Like cetuximab and 
sorafenib, erlotinib targets EGFR. Therefore, it is perhaps surprising 
that erlotinib should be effective. Sorafenib and erlotinib are both 
small molecule kinase inhibitors but they have a different spectrum 
of affinities to specific targets: for example sorafenib is more effective 
at inhibiting VEGF receptors than erlotinib but less effective at 
inhibiting EGFR [33]. However, erlotinib does not seem to be any 
more effective in PDAC patients with wild type K-Ras than in patients 
with mutations [34], in marked contrast to the K-Ras dependence 
seen in other tumour types [27,35], suggesting that the efficacy of 
erlotinib seen in PDAC may be due to inhibition of targets other than 
EGFR. It could be that although the kinases inhibited by erlotinib 
cover a narrower spectrum than those inhibited by Sorafenib this 
spectrum matches more closely the profile of kinases driving tumour 
growth and development in PDAC.

The problem is that all the targeted agents described above 
might be effective against PDAC in some patients, none of them is 
effective against the majority of patients and this means it is difficult 
to establish efficacy in a clinical trial.

Clinical trial design
The Randomised Controlled Trial (RCT) was developed nearly 

70 years ago to investigate the treatment of a relatively simple disease 
(pulmonary tuberculosis) with a single treatment (Streptomycin) 
[36]. This was a population-based approach; if more people benefit 
from a drug than are harmed by it then it is a good drug. It was always 
apparent that a simplistic use of RCTs would miss many beneficial 
agents if the benefit was restricted to only a subset of the population, 
similarly there is an ethical issue in licensing an agent for use because 
the majority will benefit when it is possible that a minority will be 
seriously harmed. Statistical methods such as multivariate assessment 
of proportional hazards can be used to mitigate this problem [37], 
but use of such approaches requires recruitment of large numbers 
of patients to give each subgroup an adequate representation. This 
approach also requires identification of the relevant parameters 
defining the subgroups, for example, subgroups could be defined by 
the genotype of the tumour. Unfortunately, the more parameters (e.g. 
clinical features or mutations) considered the greater the number 
of subgroups and so the greater the number of patients that need 
to be recruited. Clinical trials are expensive and so recruitment is 
restricted, if 1,000 patients are recruited to a trial and only 1% have a 
genotype that interacts positively with the treatment then the effect is 
likely to be missed. The solution is to selectively recruit patients who 
are predicted to benefit from the treatment.

The problem is exemplified by the failure of early trials with 
the EGFR inhibitor gefitinib in unselected cohorts with Non-Small 
Cell Lung Cancer (NSCLC) [38-40]. A later phase III study, which 
restricted trial entry to patients harbouring an EGFR mutation, was 
required to uncover the survival benefit [41]. 

In NSCLC EGFR mutations are relatively common and so in the 
successful trial described above only 337 patients had to be screened 
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in order to recruit 118 patients [41]. Conducting a comparable study 
restricting entry to patients harbouring a mutation with a prevalence 
of less than 5% (e.g. EGFR in PDAC) would require over 2,000 
patients to be screened: this would be expensive and time consuming. 
Basket trials recruit patients with different histological cancers but 
identical actionable mutations to allow completion of trials with 
statistical power in a feasible timeframe [42-44]. PDAC with its long 
tail of low frequency actionable mutations has the most to gain from 
such a strategy. The first basket trial including PDAC examined the 
effect of vemurafenib in non-melanoma cancers with BRAF V600 
mutations, it recruited 2 PDAC patients and has now been published 
[45]. The National Cancer Institute’s Molecular Analysis for Therapy 
Choice (MATCH) study is a large basket trial open to all patients with 
solid tumours who have progressed on first line chemotherapy. The 
trial includes 10 separate targeted therapies matched to actionable 
mutations. The likelihood of PDAC recruitment is significantly 
diminished by the inclusion criteria which requires four core biopsies 
of primary tumour with >70% tumour content [46].

Basket trials offer an elegant solution to overcome some statistical 
challenges with standard RCTs. However, in reality acquired resistance 
to monotherapy typically seen in PDAC demands a methodology that 
can evaluate multi-drug therapy according to a plethora of actionable 
mutations, which evolve throughout a patient's treatment (see later 
section). Neither RCTs nor basket trials can accommodate these vast 
permutations. Single-patient or n-of-1 trials use multiple time points 
and crossover two or more treatments using individual patients as a 
control. They may be the method of choice to re-evaluate previously 
dismissed treatments [47,48].

Genomics of PDAC
Obviously targeted therapy requires the target to be present. The 

key to success therefore lies in proper characterisation of tumours, to 
this end the International Cancer Genome Consortium (ICGC) has 
set up large-scale cancer genome studies to generate a comprehensive 
catalogue of somatic mutations from a variety of cancer types 
including PDAC [49]. Such studies offer new insights into the 
genomic landscape of PDAC [28,50,51] and provide the platform 
from which new approaches to PDAC treatment can be developed. 
A classification of the PDAC based on genomic structural variation 
has been proposed [28]. Two of these groups have direct therapeutic 
relevance and will be considered below.

Locally rearranged
This subgroup accounts for 30% of PDAC patients, one third 

harbour a focal amplification in an oncogene (ERBB2, CDK6, 
PIK3CA, MET and FGFR1) which can be targeted therapeutically. 

ERBB2 (HER2) has been found to be over expressed in 2% of 
PDACs, it is suggested that this is associated with absence of liver 
metastasis and propensity for lung and brain metastasis [52]. ERBB2 
is well known to be over expressed in up to 30% of breast cancers [53] 
and has long been effectively targeted with the monoclonal antibody 
trastuzumab [54], which has also been shown to have antitumor 
effects in PDAC [55]. As well as directly targeting cells dependent on 
ERBB2, trastuzumab can also be used to target cytotoxins to ERBB2 
positive tumour cells by conjugating the cytotoxin to the antibody. 
For example, a derivative of the tubulin inhibitor maitansine has 
been conjugated to trastuzumab to give ado-trastuzumab emtansine 
(Kadcyla) [56]. Kadcycla is one of the drugs that is being assessed in 
the NCI MATCH trial in patients with proven ERBB2 over expression 
[46].

One of the most frequently mutated genes in PDAC is CDKN2A 
gene which encodes the p16ink4a protein, an inhibitor of Cyclin 
Dependent Kinases 4 and 6 (CDK4/6) [57], taken together with the 
frequency of focal amplifications involving CDK6 [28], this suggests 
an exquisitely significant role for CDK4/6 in pancreatic cancer. 
Palbociclib is an oral and selective inhibitor of CDK4/6 and studies in 
PDAC animal models suggest palbociclib may be effective in PDAC 
treatment [58].

The PIK3CA gene encodes for the p110 subunit of 
phosphatidylinositol 3-kinase (PI3K), which activates the 
mammalian target of rapamycin (mTOR) pathway [59]. mTOR 
inhibitors such as afinitor (everolimus) have improved PFS in 
pancreatic neuro endocrine tumours [60] advanced breast [61] and 
renal cell carcinoma [62]. In pre-clinical studies, inhibition of the 
mTOR pathway has shown anti-tumour effect in PDAC models [63-
66]. Although treatment with everolimus in an unselected group of 
patients with metastatic PDAC who had progressed on gemcitabine 
showed minimal clinical advantage [67], sub-groups defined by 
mutations in the PIK3CA gene may benefit.

MET can be targeted using tivantinib [68], early phase I trials have 
found tivantinib to be safe and tolerable in patients with advanced 
PDAC [69].

Ponatinib is an inhibitor of FGFR1 (amongst other receptors) 
and may be effective in FGFR1 mutated cancers [70] although this 
has not yet been tested in a clinical trial with PDAC patients.

Unstable
This subgroup accounts for 14% of PDAC (in the Wadell et al. 

[28] study) and is defined by a large number of structural variations, 
implicating defects in DNA maintenance and association with both 
germline and somatic mutations in the BRCA2 and/or the PALB2 
genes. Though numbers were small combined patient and patient-
derived xenograft data indicated that these patients respond better 
to platinum based chemotherapy than other groups (P = 0.007). 
In vitro [71] and phase II studies [72] suggest that patients with 
recombination repair defects (e.g. with BRCA2 mutations) respond 
better to Poly (ADP-ribose) polymerase (PARP) inhibitors, it is 
therefore reasonable to assume that PARP inhibitors would be more 
effective in the Unstable subgroup than in others. In a prospective 
phase II non-randomised study Kaufman et al. [72] investigated the 
PARP inhibitor olaparib in 23 patients with advanced PDAC and a 
known deleterious germline mutation in BRCA1/2 who had already 
progressed on gemcitabine and platinum based chemotherapy. The 
response rate of 22% in this population is encouraging.

The emerging picture from whole genome sequencing studies is 
that PDAC tumours are very heterogeneous. Positively, many of the 
driver mutations are dominant focal mutation in oncogenes which 
have matching targeted therapies which in many cases are tried and 
tested in more homogeneous cancers types; where the prevalence of 
mutation is over 5%. The challenge of extending this strategy to low 
prevalence mutations is multi-faceted. New methods of evaluating 
treatments in very small sub-groups have been discussed above. The 
next section will consider how such subgroups can be identified.

PDAC tumour sample
The availability of high quality bio-specimens is a prerequisite 

for entry of patients into clinical trials of personalized medicine 
and ultimately will be required to apply personalized medicine 
in clinical practice. An ideal bio-specimen accurately reflects the 
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contemporaneous molecular composition of the tumour; is adequate 
for the analysis (e.g. offers enough DNA of good enough quality for 
sequencing); and allows minimally invasive acquisition to permit 
serial sampling to track clonal evolution. 

Incisional biopsies
In breast, colorectal and ovarian cancer the majority of patients 

undergo surgical resection, but in prostate, lung and pancreas cancer 
patients undergoing resection are in the minority: for example, 
resection rates for colon cancer is 85.5% compared to 16.6% for 
PDAC [73]. As a result, molecular profiling of primary PDAC is 
more dependent on incisional rather than excisional biopsies, which 
is also true of other cancer types such as prostate. The anatomical 
position of the prostate allows easy access to transrectal core biopsies 
which are widely used for molecular profiling in prostate cancer [74]. 
The pancreas however, occupies a retroperitoneal position, in close 
proximity to major vascular structures such that only an endoscopic 
approach to biopsy is possible.

Endoscopic Ultrasound-Guided Fine-Needle Aspiration (EUS-
FNA) is the most common modality for obtaining a tissue diagnosis 
of PDAC but the aspirate is often of limited or no cellularity and 
allows at most very limited histological analysis [75]. EUS-FNA 
will often be inadequate for diagnosis let alone Next Generation 
Sequencing (NGS). Whilst successful NGS on pancreas FNA has been 
reported and in fact shown good concordance with paired Formalin 
Fixed Paraffin Embedded (FFPE) samples from the primary tumour, 
this approach has not been widely replicated [76]. A core tissue 
biopsy is the gold standard incisional biopsy and often is a minimum 
requirement for clinical trials enrolment. EUS-guided Tru-Cut 
biopsies (EUS-TCB) of the pancreas was first reported in 2002 [77], 
however, this is a technically difficult procedure and as a consequence 
improvement in diagnostic accuracy (over FNA) proved marginal in 
early studies [78] and EUS-TCB has not yet been adopted into routine 
clinical practice [79]. Without core biopsies entry into basket trials, 
such as the MATCH trial which stipulates four core biopsies each 
with minimum tumour content >70%, will be limited to the small 
percentage of PDAC patients undergoing resection.

Excisional biopsies
Less than 20% of PDAC patients undergo surgical resection of 

their tumours [73]. FFPE sections from tumour excision biopsy 
are by far the most commonly used material in routine diagnostic 
laboratories due to difficulties in collection and storage of fresh or 
fresh-frozen samples. The formalin fixation process however, damages 
DNA through a number of mechanisms including fragmentation and 
cross-linking to proteins [80]. It is fortunate that the fragmented 
nucleic acids typically extracted from FFPE specimens are ideally 
suited, in length at least, to NGS platforms which are restricted to 
reading short length nucleic acids sequences also of around 200-225 
base pairs [81]. Despite the DNA damage accrued during the fixation 
process, studies have shown comparable sequencing quality with 
FFPE derived DNA compared to the gold standard of fresh or fresh-
frozen samples [81,82]. A more significant problem of using FFPE for 
NGS is the tumour cellularity of the sample. Large scale sequencing 
studies using conventional approaches requires at least 80% tumour 
cellularity [74]. Dense desmoplastic stroma is a universal feature in 
PDAC [83] which dilutes the mean tumour cellularity to between 38-
44% [51]. To some extent this can be overcome by coring out areas of 
high tumour cell content [84], either on the basis of gross histology 
[85] or using histological guided laser capture microscopy [86], but 

this is operator dependant and adds time to the workflow which 
may threaten clinical utility. These difficulties are illustrated in the 
first trial investigating personalised therapy in PDAC, the IMPACT 
study [87]. The plan was that patients would be randomised between 
standard chemotherapy or personalised chemotherapy based on 4 
sub-groups of actionable mutations. However, a pilot study although 
identifying some patients, only served to emphasise the difficulties: 
indicating that poor quality, inaccessible, untimely, heterogeneous 
bio-specimens would make molecular characterisation of the primary 
tumour to guide therapy impractical in an adequately powered trial.

Intra-tumour heterogeneity
During oncogenesis, genomic instability contributes to the 

formation of multiple clonal subpopulations with distinct molecular 
profiles, which can be demonstrated experimentally by NGS from 
multiple topographical sites within the same primary [88]. This 
intra tumour heterogeneity is particularly high in PDAC which, 
combined with low tumour cellularity, results in the potential for 
considerable sampling bias undermining personalised therapy efforts 
[89]. The problem is compounded by the apparent tendency for 
low frequency sub-clones in the primary PDAC to be enriched in 
metastatic lesions [90,91], perhaps reflecting the greater metastatic 
potential of relatively slow growing cancer stem cells [92]. Clonal 
diversity is driven by branched tumour evolution, responding to 
selective pressure from the local microenvironment and potentially 
by chemotherapy [93,94]. Studies in breast cancer have revealed that 
metastatic sites can acquire HER2 mutations even when the primary 
tumour is HER2 negative, which has obvious treatment implications 
[95-97]. These findings highlight the inadequacy of directing therapy 
based on a single primary or even metastatic tumour sample: serial 
sampling, which can track clonal diversity as it develops is required. 
Liquid biopsy has recently emerged as a potential successor to the 
standard tumour biopsy and has the potential to overcome many of 
the issues described above.

Liquid biopsy
Circulating free DNA (cfDNA) and circulating Tumour Cells 

(CTCs) obtained from blood have the potential to molecularly 
characterise the tumour to meet the aims described in the previous 
section.

Circulating free DNA
A number of studies have described the use of cfDNA to screen 

for cancer [98-100], recurrence [101-103] and response [104-109]. 
Plasma contains approximately 1µg/ml of free DNA [110], most 
comes from leukocytes and endothelial cells, but in cancer patients 
the levels can rise by as much as 10 fold; even more during chemo 
and radio therapy [111]. Some of this increase may be due to release 
of DNA from lysed apoptotic or necrotic tumour cells but the largest 
proportion results from active secretion from macrophages; work in 
mouse models suggests that this cancer induced increase includes 
nucleosomes that have not come from cancer cells [112]. This means 
that in order to detect a specific mutation in circulating DNA a 
highly robust technique is required that can cope with vast excess of 
wild type sequences. For example, Garcia-Murillas et al. [113] used 
mutation specific digital PCR to identify what they referred to as 
minimal residual disease in patients with breast cancer. This could 
only work if a specific mutant allele was known. In this work the 
specific mutations were first identified in primary tumours using 
conventional NGS. Douillard et al. [114] demonstrated that cfDNA 
is as effective a biospecimen as primary tumour in determining the 
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presence of a specific EGFR mutation when used in the setting of 
selecting patients for a targeted therapy trial. In both instances, a 
priori knowledge of the specific mutation is required, and thus cfDNA 
cannot be used with current methodology to uncover the molecular 
heterogeneity of PDAC in real time.

Circulating tumour cells
CTCs are cells shed from the primary tumour and found 

circulating in the vasculature, a sub-population of which may 
be capable of seeding distant metastasis [115]. Because of the 
methods used for detection, CTCs have come to be defined as cells 
isolated from blood with an intact nucleus, which stain positive 
for cytokeratin, Epithelial Cell Adhesion Molecule (EpCAM) and 
are negative for CD45 [116]. The most widely used and only FDA 
approved technology for identification of CTCs is CellSearchTM 
(Veridex). Using the definition above and Cell Search technology, 
CTCs are very rare (1-10 CTCs/ml blood). It has been over 10 
years since this system first demonstrated that enumeration of 
CTCs, despite their reported scarcity, has prognostic significance in 
metastatic breast cancer [117] and this has since been confirmed in 
many other cancer types. More recently, CTCs have been evaluated 
as a means of directing personalised chemotherapy by overcoming 
the issue of genetic discordance between primary and secondary 
molecular profile [96,97]. The DETECT study for example, aimed 
to determine whether treatment intervention guided by the HER2 
status of CTCs in HER negative metastatic breast cancer patients 
(determined by primary tumour assessment) is superior to physician 
assessment [118].

The benefits of CTC analysis in targeting PDAC seem intuitive 
given all the obstacles precluding solid tumour tissue as a bio-
specimen. With its propensity for early haematogenous metastasis 
CTCs should be more abundant and identification easier in PDAC 
than in other cancer types. Unfortunately, it has proven more difficult 
to identify CTCs in PDAC than in other cancer types, indeed there 
seems to be an inverse relationship between five-year survival and 
EpCAM-based CTC recovery rates. A low number of CTCs identified 
in patients even with locally advanced or metastatic disease has 
been consistently explained by the assumption that CTCs must be 
exceptionally rare in PDAC [119,120]. A more plausible explanation 
is that they are exceptionally abundant, just not identifiable with 
current Ep-CAM based methods [121].

This paradox that less CTCs are observed in a more metastatic 
tumour type may be explained by the process of Epithelial 
Mesenchymal Transition (EMT): a process that could make tumour 
cells more likely to metastasise while simultaneously making them 
less likely to be detected. EMT plays an essential role in physiological 
processes such as embryology and tissue repair but also pathological 
ones such as fibrosis [122] and cancer progression [123]. In cancer, 
polarised epithelial cells adhered to the basement membrane and 
must transit through a number of biological changes to assume a 
mesenchymal phenotype before they can invade the vasculature 
[124]. In the process cells shed their epithelial antigens including 
EpCAM and cytokeratin (CK) and acquire mesenchymal markers 
such as COL5A2, EGFR, MSN, PDGFRB and Twist. A degree of 
phenotypic plasticity has been observed whereby cells may transition 
between epithelial and mesenchymal state with CTCs existing in both 
forms [125]. The process has been implicated in the rapid formation 
of primary tumours [126,127], metastasis [128,129], acquisition of 
therapeutic resistance [130] and poor survival [131] associated with 

PDAC. The most widely used CTC enrichment systems including 
CellSearch™, Adna Test [132], Magnetic Activated Cell Sorting 
System (MACS®) [133] and microfluidic technologies [120] all require 
cell surface expression of EpCAM for CTC capture and will therefore 
miss mesenchymal sub-populations of CTCs which are known to be 
responsible for the aggressive characteristics of the tumour. This is 
supported by evidence suggesting a purely mesenchymal phenotype 
predominate in the metastatic stages of cancer [134].

Protein and DNA based methods have been proposed to extend 
the utility of CTC analysis to mesenchymal tumour cells. Gorges et al. 
[121] have described the use of new mesenchymal cell surface markers 
which select for different mesenchymal sub-populations of CTCs. 
This approach is currently being pursued by Adna [135], Cellsearch 
[135] and CanPatrol CTC [134]. The use of surface markers requires 
a priori selection of the markers or markers and will therefore be 
vulnerable to missing CTC sub-populations in a heterogeneous 
population: significant genetic disparity between CTCs, so called 
‘micro heterogeneity’, has been demonstrated in cancer patients 
[136]. Another approach is to use the genomic signature of the CTCs, 
independent of cell surface markings, to deliver an unbiased analysis 
of all CTC sub-populations. This approach offers the possibility 
to detect any type of cell in a lineage based on founder mutations. 
However, it is limited by the contamination of vast numbers of wild 
type leucocytes (~7 x106/mL blood) [137] which drown out the 
mutant signal from CTC derived DNA. Several negative depletion 
strategies, which remove leucocytes, thereby enriching the CTC 
populations are available to overcome this [138]. Developments in 
NGS now permit sequencing to a much greater depth and PCR errors 
have been reduced to a level that now permit identification of mutant 
signal amongst considerable contaminating wild type DNA.

Next generation sequencing
As discussed previously, multiple actionable mutations have 

been identified at low frequency in the PDAC genome [28,50,51]. 
Sequencing approaches therefore will need to interrogate multiple 
candidate genes to provide a meaningful attempt at personalised 
therapy encompassing all of the targetable oncogenes and genetic 
biomarkers. Oncology consortiums have recently developed custom 
gene panels using multiplex PCR combined with amplicon-based 
NGS from as little as 10 ng of DNA derived from FFPE [139]. The 
composition of the gene panels reflects both the frequency of mutated 
genes and oncogenes with potentially actionable mutations. Emphasis 
remains on validating diagnostic tests across multiple clinical 
laboratories [139,140], allowing in-house downstream bioinformatic 
analysis within the budget and turnaround time required by clinical 
oncologists. For trials such as the NCI MATCH trial, larger custom 
panels including up to 200 genes are used on easily accessible 
platforms (such as the Ion Torrent PGM). Though these panels 
are designed for sequencing of the primary tumour, application to 
alternative biospecimens such as enriched CTCs should be considered 
in PDAC where access to primary tumour is limited and may not 
properly reflect the clinically important metastatic deposits. In this 
way treatment can be adapted to the changing cancer burden. The 
initial treatment based on the primary tumour, possibly requiring a 
combination of therapies targeting dominant cancer cell populations; 
a modified treatment on relapse with further modification as resistant 
cancer cell populations are selected.

Conclusion
Improved 5-year survival rates in many cancer types has resulted 
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from a deeper understanding of cancer genomics, pharmaceutical 
development of targeted therapies and a personalised approach to 
therapy; these improvements have not been realised in PDAC. Recent 
insights into the PDAC genome not only explain these failures but 
point to new approaches to tackle them. Advances in treatment are 
limited by the weakest link in the chain. The genetic revolution is 
driving a paradigm shift from histological classification of PDAC 
according to organ, to considering PDAC as a disparate groups of rare 
diseases, and finally to truly personalized medicine on an individual 
basis. The pharmaceutical industry has duly kept pace manufacturing 
targeted treatments soon after molecular targets are identified. NGS 
developments have also kept pace and are now capable of identifying 
all molecular targets on a population level. Improvements in PDAC 
survival will come from addressing the weakest links in the chain: 
treatment evaluation and biospecimen acquisition.
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